Generic analysis of Borel homomorphisms for the finite Friedman-Stanley jumps

Assaf Shani
Concordia University

Descriptive set theory \& dynamics conference Warsaw, August 2023

Research partially supported by NSF grant DMS-2246746.

Borel homomorphisms and reductions

An equivalence relation E on a Polish space X is analytic (Borel) if $E \subseteq X \times X$ is analytic (Borel).
Definition
Let E and F be equivalence relations on Polish spaces X and Y respectively. $f: X \rightarrow Y$ a Borel map.

- f is a Borel homomorphism, $f: E \rightarrow_{B} F$, if $x E x^{\prime} \Longrightarrow f(x) F f\left(x^{\prime}\right)$.
- f is a Borel reduction of E to F if $x E x^{\prime} \Longleftrightarrow f(x) F f\left(x^{\prime}\right)$.
- E is Borel reducible to F, denoted $E \leq_{B} F$, if there is a Borel reduction of E to F.

- E, F are Borel bireducible $\left(E \sim_{B} F\right)$ if $E \leq_{B} F \& F \leq_{B} E$.

Borel homomorphisms and reductions

An equivalence relation E on a Polish space X is analytic (Borel) if $E \subseteq X \times X$ is analytic (Borel).
Definition
Let E and F be equivalence relations on Polish spaces X and Y respectively. $f: X \rightarrow Y$ a Borel map.

- f is a Borel homomorphism, $f: E \rightarrow_{B} F$, if $x E x^{\prime} \Longrightarrow f(x) F f\left(x^{\prime}\right)$.
- f is a Borel reduction of E to F if $x E x^{\prime} \Longleftrightarrow f(x) F f\left(x^{\prime}\right)$.
- E is Borel reducible to F, denoted $E \leq_{B} F$, if there is a Borel reduction of E to F.

- E, F are Borel bireducible $\left(E \sim_{B} F\right)$ if $E \leq_{B} F \& F \leq_{B} E$.

Some motivations:

- "Borel definable" cardinality for definable quotient spaces.

Borel homomorphisms and reductions

An equivalence relation E on a Polish space X is analytic (Borel) if $E \subseteq X \times X$ is analytic (Borel).

Definition

Let E and F be equivalence relations on Polish spaces X and Y respectively. $f: X \rightarrow Y$ a Borel map.

- f is a Borel homomorphism, $f: E \rightarrow_{B} F$, if $x E x^{\prime} \Longrightarrow f(x) F f\left(x^{\prime}\right)$.
- f is a Borel reduction of E to F if $x E x^{\prime} \Longleftrightarrow f(x) F f\left(x^{\prime}\right)$.
- E is Borel reducible to F, denoted $E \leq_{B} F$, if there is a Borel reduction of E to F.

- E, F are Borel bireducible $\left(E \sim_{B} F\right)$ if $E \leq_{B} F \& F \leq_{B} E$.

Some motivations:

- "Borel definable" cardinality for definable quotient spaces.
- Possible complete invariants for classification problems.

Friedman-Stanley jump / countable powerset operation

Definition

Let E be an equivalence relation on a Polish space X.
Define E^{+}on the Polish space $X^{\mathbb{N}}$ by

$$
x E^{+} y \Longleftrightarrow \forall n \exists m(x(n) E y(m)) \& \forall n \exists m(y(n) E x(m))
$$

that is, $\left\{[x(n)]_{E} ; n \in \mathbb{N}\right\}=\left\{[y(n)]_{E} ; n \in \mathbb{N}\right\}$.

Friedman-Stanley jump / countable powerset operation

Definition

Let E be an equivalence relation on a Polish space X.
Define E^{+}on the Polish space $X^{\mathbb{N}}$ by

$$
x E^{+} y \Longleftrightarrow \forall n \exists m(x(n) E y(m)) \& \forall n \exists m(y(n) E x(m))
$$

that is, $\left\{[x(n)]_{E} ; n \in \mathbb{N}\right\}=\left\{[y(n)]_{E} ; n \in \mathbb{N}\right\}$.

- The countable powerset operation $\mathcal{P}_{\aleph_{0}}(-)$, for the quotient X / E, coded on a Polish space.

Friedman-Stanley jump / countable powerset operation

Definition

Let E be an equivalence relation on a Polish space X.
Define E^{+}on the Polish space $X^{\mathbb{N}}$ by

$$
x E^{+} y \Longleftrightarrow \forall n \exists m(x(n) E y(m)) \& \forall n \exists m(y(n) E x(m))
$$

that is, $\left\{[x(n)]_{E} ; n \in \mathbb{N}\right\}=\left\{[y(n)]_{E} ; n \in \mathbb{N}\right\}$.

- The countable powerset operation $\mathcal{P}_{\aleph_{0}}(-)$, for the quotient X / E, coded on a Polish space.
- Classifiability using hereditarily countable invariants.
- E is concretely classifiable if $E \leq_{B}=_{\mathbb{R}}$, equality $E R$ on \mathbb{R}. (Numerical invariants.)

Friedman-Stanley jump / countable powerset operation

Definition

Let E be an equivalence relation on a Polish space X.
Define E^{+}on the Polish space $X^{\mathbb{N}}$ by

$$
x E^{+} y \Longleftrightarrow \forall n \exists m(x(n) E y(m)) \& \forall n \exists m(y(n) E x(m))
$$

that is, $\left\{[x(n)]_{E} ; n \in \mathbb{N}\right\}=\left\{[y(n)]_{E} ; n \in \mathbb{N}\right\}$.

- The countable powerset operation $\mathcal{P}_{\aleph_{0}}(-)$, for the quotient X / E, coded on a Polish space.
- Classifiability using hereditarily countable invariants.
- E is concretely classifiable if $E \leq_{B}=_{\mathbb{R}}$, equality $E R$ on \mathbb{R}. (Numerical invariants.)
- E is classifiable using countable sets of reals as invariants if $E \leq_{B}=+$

Friedman-Stanley jump / countable powerset operation

Definition

Let E be an equivalence relation on a Polish space X.
Define E^{+}on the Polish space $X^{\mathbb{N}}$ by

$$
x E^{+} y \Longleftrightarrow \forall n \exists m(x(n) E y(m)) \& \forall n \exists m(y(n) E x(m))
$$

that is, $\left\{[x(n)]_{E} ; n \in \mathbb{N}\right\}=\left\{[y(n)]_{E} ; n \in \mathbb{N}\right\}$.

- The countable powerset operation $\mathcal{P}_{\aleph_{0}}(-)$, for the quotient X / E, coded on a Polish space.
- Classifiability using hereditarily countable invariants.
- E is concretely classifiable if $E \leq_{B}=_{\mathbb{R}}$, equality $E R$ on \mathbb{R}. (Numerical invariants.)
- E is classifiable using countable sets of reals as invariants if $E \leq_{B}=+$
- Countable sets of countable sets of reals as invariants:

$$
E \leq_{B}=_{\mathbb{R}}^{++} .
$$

Motivation

Very general goal:
Given equivalence relation E and F, is $E \leq_{B} F$?

Motivation

Very general goal:
Given equivalence relation E and F, is $E \leq_{B} F$?
Today's goal:
For $n \leq \omega$, develop methods to prove that $=_{\mathbb{R}}^{+n} \leq_{B} E$ for some E.

Motivation

Very general goal:
Given equivalence relation E and F, is $E \leq_{B} F$?
Today's goal:
For $n \leq \omega$, develop methods to prove that $=_{\mathbb{R}}^{+n} \leq_{B} E$ for some E.

Remark:

For $={ }_{\mathbb{R}}^{+}$, the situation is well understood. Some examples:

- Foreman - Louveau 1995: $=_{\mathbb{R}}^{+}$is Borel bireducible with the classification problem of ergodic discrete spectrum measure preserving transformations.
- Marker 2007: Let T be a first order theory whose space of types is uncountable. Then $=_{\mathbb{R}}^{+} \leq_{B} \cong_{T}$.

Generic dichotomy for Borel homomorphisms

Theorem (Kanovei-Sabok-Zapletal 2013)
Let E be an analytic equivalence relation. Then either

- $=\mathbb{R}^{+}$is Borel reducible to E, or
- any Borel homomorphism from $=_{\mathbb{R}}^{+}$to E maps a comeager subset of $\mathbb{R}^{\mathbb{N}}$ into a single E-class.

Generic dichotomy for Borel homomorphisms

Theorem (Kanovei-Sabok-Zapletal 2013)
Let E be an analytic equivalence relation. Then either

- $=\mathbb{R}^{+}$is Borel reducible to E, or
- any Borel homomorphism from $=_{\mathbb{R}}^{+}$to E maps a comeager subset of $\mathbb{R}^{\mathbb{N}}$ into a single E-class.

Theorem (Marker 2007)
T first order theory, uncountable type space. Then $=_{\mathbb{R}}^{+} \leq_{B} \cong_{T}$.

Generic dichotomy for Borel homomorphisms

Theorem (Kanovei-Sabok-Zapletal 2013)
Let E be an analytic equivalence relation. Then either

- $=\mathbb{R}_{\mathbb{R}}^{+}$is Borel reducible to E, or
- any Borel homomorphism from $=_{\mathbb{R}}^{+}$to E maps a comeager subset of $\mathbb{R}^{\mathbb{N}}$ into a single E-class.

Theorem (Marker 2007)
T first order theory, uncountable type space. Then $=_{\mathbb{R}}^{+} \leq_{B} \cong_{T}$.

- Fix a perfect set of types C, identified with \mathbb{R}.
- Naive idea: map a countable set of reals $A \subseteq C$ to a model M satisfying "precisely" A.

Generic dichotomy for Borel homomorphisms

Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

- $=\mathbb{R}^{+}$is Borel reducible to E, or
- any Borel homomorphism from $=_{\mathbb{R}}^{+}$to E maps a comeager subset of $\mathbb{R}^{\mathbb{N}}$ into a single E-class.

Theorem (Marker 2007)

T first order theory, uncountable type space. Then $=_{\mathbb{R}}^{+} \leq_{B} \cong_{T}$.

- Fix a perfect set of types C, identified with \mathbb{R}.
- Naive idea: map a countable set of reals $A \subseteq C$ to a model M satisfying "precisely" A.
- Can be done if A is a Scott set: sufficiently closed under some countably many operations.

Generic dichotomy for Borel homomorphisms

Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

- $=\mathbb{R}^{+}$is Borel reducible to E, or
- any Borel homomorphism from $=_{\mathbb{R}}^{+}$to E maps a comeager subset of $\mathbb{R}^{\mathbb{N}}$ into a single E-class.

Theorem (Marker 2007)

T first order theory, uncountable type space. Then $=_{\mathbb{R}}^{+} \leq_{B} \cong_{T}$.

- Fix a perfect set of types C, identified with \mathbb{R}.
- Naive idea: map a countable set of reals $A \subseteq C$ to a model M satisfying "precisely" A.
- Can be done if A is a Scott set: sufficiently closed under some countably many operations.
- Improved idea: $A \mapsto \operatorname{closure}(A) \mapsto M$.

Generic dichotomy for Borel homomorphisms

Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

- $=\mathbb{R}^{+}$is Borel reducible to E, or
- any Borel homomorphism from $=_{\mathbb{R}}^{+}$to E maps a comeager subset of $\mathbb{R}^{\mathbb{N}}$ into a single E-class.

Theorem (Marker 2007)

T first order theory, uncountable type space. Then $=_{\mathbb{R}}^{+} \leq_{B} \cong_{T}$.

- Fix a perfect set of types C, identified with \mathbb{R}.
- Naive idea: map a countable set of reals $A \subseteq C$ to a model M satisfying "precisely" A.
- Can be done if A is a Scott set: sufficiently closed under some countably many operations.
- Improved idea: $A \mapsto \operatorname{closure}(A) \mapsto M$.
- This gives a Borel homomorphism, not trivial on comeager sets. Therefore $=_{\mathbb{R}}^{+} \leq_{B} \simeq_{T}$.

Some difficulties in generalizing for $n \geq 2$

Theorem (Kanovei-Sabok-Zapletal 2013)
Let E be an analytic equivalence relation. Then either

- $={ }_{\mathbb{R}}^{+}$is Borel reducible to E, or
- any $f:=_{\mathbb{R}}^{+} \rightarrow_{B} E$ maps a comeager set into a single E-class.

Already for $={ }_{\mathbb{R}}^{++}$:

Some difficulties in generalizing for $n \geq 2$

Theorem (Kanovei-Sabok-Zapletal 2013)
Let E be an analytic equivalence relation. Then either

- $={ }_{\mathbb{R}}^{+}$is Borel reducible to E, or
\rightarrow any $f:=_{\mathbb{R}}^{+} \rightarrow_{B} E$ maps a comeager set into a single E-class.
Already for $={ }_{\mathbb{R}}^{++}$:
- On a comeager subset $C \subseteq\left(\mathbb{R}^{\mathbb{N}}\right)^{\mathbb{N}},\left(=_{\mathbb{R}}^{++} \upharpoonright C\right) \leq_{B}=_{\mathbb{R}}^{+}$.

Some difficulties in generalizing for $n \geq 2$

Theorem (Kanovei-Sabok-Zapletal 2013)
Let E be an analytic equivalence relation. Then either

- $={ }_{\mathbb{R}}^{+}$is Borel reducible to E, or
\rightarrow any $f:=_{\mathbb{R}}^{+} \rightarrow_{B} E$ maps a comeager set into a single E-class.
Already for $={ }_{\mathbb{R}}^{++}$:
- On a comeager subset $C \subseteq\left(\mathbb{R}^{\mathbb{N}}\right)^{\mathbb{N}},\left(=_{\mathbb{R}}^{++} \upharpoonright C\right) \leq_{B}=_{\mathbb{R}}^{+}$.
- There is a non-trivial Borel homomorphism from $=_{\mathbb{R}}^{++}$to $=_{\mathbb{R}}^{+}$. That is, the union map $\left\langle x_{i, j} \mid i, j \in \mathbb{N}\right\rangle \mapsto\left\langle x_{\langle i, j\rangle} \mid i, j \in \mathbb{N}\right\rangle$.

Some difficulties in generalizing for $n \geq 2$

Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

- $=_{\mathbb{R}}^{+}$is Borel reducible to E, or
\rightarrow any $f:=_{\mathbb{R}}^{+} \rightarrow_{B} E$ maps a comeager set into a single E-class.
Already for $={ }_{\mathbb{R}}^{++}$:
- On a comeager subset $C \subseteq\left(\mathbb{R}^{\mathbb{N}}\right)^{\mathbb{N}},\left(=_{\mathbb{R}}^{++} \upharpoonright C\right) \leq_{B}==_{\mathbb{R}}^{+}$.
- There is a non-trivial Borel homomorphism from $=_{\mathbb{R}}^{++}$to $=_{\mathbb{R}}^{+}$. That is, the union map $\left\langle x_{i, j} \mid i, j \in \mathbb{N}\right\rangle \mapsto\left\langle x_{<i, j\rangle} \mid i, j \in \mathbb{N}\right\rangle$.

More generally:

- For $n \geq 2$, need a different presentation / topology.
- Need to consider the homomorphisms $=_{\mathbb{R}}^{+n} \rightarrow_{B}=_{\mathbb{R}}^{+k}, k<n$, essentially taking a hereditarily countable set of rank n to the set of its rank k elements.

Main result

Theorem (S.)
There are equivalence relations F_{n} on Polish spaces X_{n}, s.t.

1. $F_{n} \sim_{B}=_{\mathbb{R}}^{+n}, n=1,2,3, \ldots, \omega$, and
there are Borel homomorphism $u_{k}^{n}: F_{n} \rightarrow_{B} F_{k}, k<n \leq \omega$, s.t.

Main result

Theorem (S.)

There are equivalence relations F_{n} on Polish spaces X_{n}, s.t.

1. $F_{n} \sim_{B}=_{\mathbb{R}}^{+n}, n=1,2,3, \ldots, \omega$, and
there are Borel homomorphism $u_{k}^{n}: F_{n} \rightarrow_{B} F_{k}, k<n \leq \omega$, s.t.
2. for any analytic equivalence relation E either

- F_{n} is Borel reducible to E, or
- every Borel homomorphism $f: F_{n} \rightarrow_{B} E$ factors through u_{k}^{n} on a comeager set, for $k<n$. (That is, there is a homomorphism $h: F_{k} \rightarrow_{B} E$ so that $(h \circ u) E f$ on a comeager set.)

Main result

Theorem (S.)

There are equivalence relations F_{n} on Polish spaces X_{n}, s.t.

1. $F_{n} \sim_{B}=_{\mathbb{R}}^{+n}, n=1,2,3, \ldots, \omega$, and
there are Borel homomorphism $u_{k}^{n}: F_{n} \rightarrow_{B} F_{k}, k<n \leq \omega$, s.t.
2. for any analytic equivalence relation E either

- F_{n} is Borel reducible to E, or
- every Borel homomorphism $f: F_{n} \rightarrow_{B} E$ factors through u_{k}^{n} on a comeager set, for $k<n$. (That is, there is a homomorphism $h: F_{k} \rightarrow_{B} E$ so that $(h \circ u) E f$ on a comeager set.)

Figure: $\left(\forall f: F_{n} \rightarrow_{B} E\right)\left(\exists k<n \exists h: F_{k} \rightarrow E\right)$

Main result

Theorem (S.)

There are equivalence relations F_{n} on Polish spaces X_{n}, s.t.

1. $F_{n} \sim_{B}={ }_{\mathbb{R}}^{+n}, n=1,2,3, \ldots, \omega$, and
there are Borel homomorphism $u_{k}^{n}: F_{n} \rightarrow_{B} F_{k}, k<n \leq \omega$, s.t.
2. for any analytic equivalence relation E either

- F_{n} is Borel reducible to E, or
- every Borel homomorphism $f: F_{n} \rightarrow_{B} E$ factors through u_{k}^{n} on a comeager set, for $k<n$. (That is, there is a homomorphism $h: F_{k} \rightarrow_{B} E$ so that $(h \circ u) E f$ on a comeager set.)

To prove that

 $=_{\mathbb{R}}^{+n} \leq_{B} E$, enough to find a non-trivial homomorphism.

Figure: $\left(\forall f: F_{n} \rightarrow_{B} E\right)\left(\exists k<n \exists h: F_{k} \rightarrow E\right)$

An application to a question of Clemens

The following answers positively a question of Clemens.
Theorem (S.)
For any analytic equivalence relation E, either

- $=^{+\omega} \leq_{B} E$, or
- any Borel homomorphism $f:=^{+\omega} \rightarrow_{B} E,=^{+\omega}$ retains its complexity on a fiber, that is, there is y in the domain of E so that $={ }^{+\omega}$ is Borel reducible to $=^{+\omega} \upharpoonright\{x ; f(x) E y\}$.
That is, $=^{+\omega}$ is prime.

An application to a question of Clemens

The following answers positively a question of Clemens.
Theorem (S.)
For any analytic equivalence relation E, either

- $={ }^{+\omega} \leq_{B} E$, or
- any Borel homomorphism $f:=^{+\omega} \rightarrow_{B} E,=^{+\omega}$ retains its complexity on a fiber, that is, there is y in the domain of E so that $={ }^{+\omega}$ is Borel reducible to $=^{+\omega} \upharpoonright\{x ; f(x) E y\}$.
That is, $=^{+\omega}$ is prime.
- Can replace $=^{+\omega}$ with F_{ω}.

An application to a question of Clemens

The following answers positively a question of Clemens.
Theorem (S.)
For any analytic equivalence relation E, either

- $=^{+\omega} \leq_{B} E$, or
- any Borel homomorphism $f:=^{+\omega} \rightarrow_{B} E,={ }^{+\omega}$ retains its complexity on a fiber, that is, there is y in the domain of E so that $={ }^{+\omega}$ is Borel reducible to $=^{+\omega} \upharpoonright\{x ; f(x) E y\}$.
That is, $=^{+\omega}$ is prime.
- Can replace $=^{+\omega}$ with F_{ω}.
- By the main theorem, if $F_{\omega} \not_{B} E$, then any $f: F_{\omega} \rightarrow_{B} E$ factors through u_{k}^{ω} for some k, on a comeager set.

An application to a question of Clemens

The following answers positively a question of Clemens.
Theorem (S.)
For any analytic equivalence relation E, either

- $=^{+\omega} \leq_{B} E$, or
- any Borel homomorphism $f:=^{+\omega} \rightarrow_{B} E,=^{+\omega}$ retains its complexity on a fiber, that is, there is y in the domain of E so that $={ }^{+\omega}$ is Borel reducible to $=^{+\omega} \upharpoonright\{x ; f(x) E y\}$.
That is, $=^{+\omega}$ is prime.
- Can replace $=^{+\omega}$ with F_{ω}.
- By the main theorem, if $F_{\omega} \not_{B} E$, then any $f: F_{\omega} \rightarrow_{B} E$ factors through u_{k}^{ω} for some k, on a comeager set.
- From the definitions, F_{ω} is equivalent to its restriction to any fiber of u_{k}^{ω}.

An application to a question of Clemens

The following answers positively a question of Clemens.
Theorem (S.)
For any analytic equivalence relation E, either

- $=^{+\omega} \leq_{B} E$, or
- any Borel homomorphism $f:=^{+\omega} \rightarrow_{B} E,={ }^{+\omega}$ retains its complexity on a fiber, that is, there is y in the domain of E so that $={ }^{+\omega}$ is Borel reducible to $={ }^{+\omega} \upharpoonright\{x ; f(x) E y\}$.
That is, $=^{+\omega}$ is prime.
- Can replace $=^{+\omega}$ with F_{ω}.
- By the main theorem, if $F_{\omega} \not Z_{B} E$, then any $f: F_{\omega} \rightarrow_{B} E$ factors through u_{k}^{ω} for some k, on a comeager set.
- From the definitions, F_{ω} is equivalent to its restriction to any fiber of u_{k}^{ω}.
- It remains to show that F_{ω} retains its complexity on comeager sets: $F_{\omega} \leq_{B} F_{\omega} \upharpoonright C$ for any comeager C.

Spectrum of the meager ideal

Theorem (S.)
For any $n \leq \omega, F_{n}$ retains its complexity on comeager sets:
$F_{n} \leq_{B} F_{n} \upharpoonright C$ for any comeager set C.
In particular, $=_{\mathbb{R}}^{+n}$ is in the spectrum of the meager ideal.
This was proved by Kanovei, Sabok, and Zapletal for $n=1$. For $n>1$, the theorem fails for $=_{\mathbb{R}}^{+n}$, so the F_{n} 's are necessary.

Spectrum of the meager ideal

Theorem (S.)
For any $n \leq \omega, F_{n}$ retains its complexity on comeager sets:
$F_{n} \leq_{B} F_{n} \upharpoonright C$ for any comeager set C.
In particular, $=_{\mathbb{R}}^{+n}$ is in the spectrum of the meager ideal.
This was proved by Kanovei, Sabok, and Zapletal for $n=1$.
For $n>1$, the theorem fails for $=_{\mathbb{R}}^{+n}$, so the F_{n} 's are necessary.

- Fix a comeager set C (assume it is F_{n}-invariant). Fix $f: F_{n} \rightarrow_{B} F_{n} \upharpoonright C$ which is the identity on C.

Spectrum of the meager ideal

Theorem (S.)
For any $n \leq \omega, F_{n}$ retains its complexity on comeager sets:
$F_{n} \leq_{B} F_{n} \upharpoonright C$ for any comeager set C.
In particular, $=_{\mathbb{R}}^{+n}$ is in the spectrum of the meager ideal.
This was proved by Kanovei, Sabok, and Zapletal for $n=1$.
For $n>1$, the theorem fails for $=_{\mathbb{R}}^{+n}$, so the F_{n} 's are necessary.

- Fix a comeager set C (assume it is F_{n}-invariant). Fix $f: F_{n} \rightarrow_{B} F_{n} \upharpoonright C$ which is the identity on C.
- From the definitions, u_{k}^{n} is not a reduction on any comeager set, for $k<n$.
- So f does not factor through u_{k}^{n}, for $k<n$.

Spectrum of the meager ideal

Theorem (S.)

For any $n \leq \omega, F_{n}$ retains its complexity on comeager sets:
$F_{n} \leq_{B} F_{n} \upharpoonright C$ for any comeager set C.
In particular, $=_{\mathbb{R}}^{+n}$ is in the spectrum of the meager ideal.
This was proved by Kanovei, Sabok, and Zapletal for $n=1$.
For $n>1$, the theorem fails for $=_{\mathbb{R}}^{+n}$, so the F_{n} 's are necessary.

- Fix a comeager set C (assume it is F_{n}-invariant). Fix $f: F_{n} \rightarrow_{B} F_{n} \upharpoonright C$ which is the identity on C.
- From the definitions, u_{k}^{n} is not a reduction on any comeager set, for $k<n$.
- So f does not factor through u_{k}^{n}, for $k<n$.
- By the main theorem, $F_{n} \leq_{B} F_{n} \upharpoonright C$.

Definition of F_{n} and u_{m}^{n}

- $X_{n}=\left(\left(2^{\mathbb{N}}\right)^{\mathbb{N}}\right)^{n}$, for $n=1,2,3, \ldots, \omega$. Fix $x \in X_{n}$.

Definition of F_{n} and u_{m}^{n}

- $X_{n}=\left(\left(2^{\mathbb{N}}\right)^{\mathbb{N}}\right)^{n}$, for $n=1,2,3, \ldots, \omega$. Fix $x \in X_{n}$.
- $A_{1}^{x}=\{x(0)(k) ; k \in \mathbb{N}\} \subseteq 2^{\mathbb{N}}$.

	$a_{1}^{x, I}=\{x(0)(k) ; x(1)(I)(k)=1\} \subseteq A_{1}^{x}$						
\vdots	\vdots	\vdots	\vdots		:	.	.
	1	0	1				
*	1	1	0			-	
*	0	1	1	\mapsto	*	*	-
*	0	1	0				*
$x(0)$	$x(1)(0)$	$x(1)(1)$	$x(1)(2)$		$a_{1}^{\text {x,0 }}$	$a_{1}^{x, 1}$	$a_{1}^{\text {¢, }}$

Definition of F_{n} and u_{m}^{n}

- $X_{n}=\left(\left(2^{\mathbb{N}}\right)^{\mathbb{N}}\right)^{n}$, for $n=1,2,3, \ldots, \omega$. Fix $x \in X_{n}$.
- $A_{1}^{x}=\{x(0)(k) ; k \in \mathbb{N}\} \subseteq 2^{\mathbb{N}}$.

$a_{1}^{x, l}=\{x(0)(k) ; x(1)(I)(k)=1\} \subseteq A_{1}^{x}$								
\vdots	\vdots	\vdots	\vdots		\vdots	\vdots	\vdots	
$*$	1	0	1	\ldots	$*$	-	$*$	\cdots
$*$	1	1	0	\cdots	$*$	$*$	-	\cdots
$*$	0	1	1	\cdots	-	$*$	$*$	\cdots
$*$	0	1	0	\cdots	-	$*$	-	\cdots
$x(0)$	$x(1)(0)$	$x(1)(1)$	$x(1)(2)$		$a_{1}^{x, 0}$	$a_{1}^{x, 1}$	$a_{1}^{x, 2}$	
$\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$	$2^{\mathbb{N}}$	$2^{\mathbb{N}}$	$2^{\mathbb{N}}$					
	$A_{2}^{x}=\left\{a_{1}^{x, l} ; I \in \mathbb{N}\right\} ; a_{2}^{x, l}=\left\{a_{1}^{x, k} ; x(2)(I)(k)=1\right\} \subseteq A_{2}^{x}$.							

Definition of F_{n} and u_{m}^{n}

- $X_{n} \subseteq\left(\left(2^{\mathbb{N}}\right)^{\mathbb{N}}\right)^{n}$, for $n=1,2,3, \ldots, \omega$. Fix $x \in X_{n}$.
- $A_{1}^{x}=\{x(0)(k) ; k \in \mathbb{N}\} \subseteq 2^{\mathbb{N}}$.

$$
\begin{aligned}
& a_{1}^{x, I}=\{x(0)(k) ; x(1)(I)(k)=1\} \subseteq A_{1}^{x} \\
& \begin{array}{ccccccccc}
\vdots & \vdots & \vdots & \vdots & & & \vdots & \vdots & \vdots \\
\\
* & 1 & 0 & 1 & \ldots & & \\
* & 1 & 1 & 0 & \cdots & & - & * & \cdots \\
* & 0 & 1 & 1 & \cdots & \mapsto & * & - & \cdots \\
* & 0 & 1 & 0 & \cdots & - & * & * & \cdots \\
x(0) & x(1)(0) & x(1)(1) & x(1)(2) & & - & * & - & \cdots \\
\left(2^{\mathbb{N}}\right)^{\mathbb{N}} & 2^{\mathbb{N}} & 2^{\mathbb{N}} & 2^{\mathbb{N}} & & & a_{1}^{x, 0} & a_{1}^{x, 1} & a_{1}^{x, 2} \\
& & & & & &
\end{array} \\
& \text { - } A_{2}^{\times}=\left\{a_{1}^{x, I} ; I \in \mathbb{N}\right\} ; a_{2}^{x, I}=\left\{a_{1}^{x, k} ; x(2)(I)(k)=1\right\} \subseteq A_{2}^{x} \text {. } \\
& \mathbf{x} \mathbf{F}_{\mathbf{n}} \mathbf{y} \Longleftrightarrow \mathbf{A}_{\mathbf{i}}^{\mathbf{x}}=\mathbf{A}_{\mathbf{i}}^{\mathbf{y}} \text { for } \mathbf{i} \leq \mathbf{n}
\end{aligned}
$$

Definition of F_{n} and u_{m}^{n}

- $X_{n} \subseteq\left(\left(2^{\mathbb{N}}\right)^{\mathbb{N}}\right)^{n}$, for $n=1,2,3, \ldots, \omega$. Fix $x \in X_{n}$.
- $A_{1}^{x}=\{x(0)(k) ; k \in \mathbb{N}\} \subseteq 2^{\mathbb{N}}$.

$$
\begin{aligned}
& a_{1}^{x, I}=\{x(0)(k) ; x(1)(I)(k)=1\} \subseteq A_{1}^{x} \\
& \begin{array}{ccccccccc}
\vdots & \vdots & \vdots & \vdots & & & \vdots & \vdots & \vdots \\
\\
* & 1 & 0 & 1 & \ldots & & - & * & \cdots \\
* & 1 & 1 & 0 & \cdots & * & * & - & \cdots \\
* & 0 & 1 & 1 & \cdots & \mapsto & - & * & * \\
* & 0 & 1 & 0 & \cdots & - & * & - & \cdots \\
x(0) & x(1)(0) & x(1)(1) & x(1)(2) & & a_{1}^{x, 0} & a_{1}^{x, 1} & a_{1}^{x, 2} & \\
\left(2^{\mathbb{N}}\right)^{\mathbb{N}} & 2^{\mathbb{N}} & 2^{\mathbb{N}} & 2^{\mathbb{N}} & & & & &
\end{array} \\
& \text { - } A_{2}^{\times}=\left\{a_{1}^{x, I} ; I \in \mathbb{N}\right\} ; a_{2}^{x, l}=\left\{a_{1}^{x, k} ; x(2)(I)(k)=1\right\} \subseteq A_{2}^{x} . \\
& \mathbf{x} \mathbf{F}_{\mathbf{n}} \mathbf{y} \Longleftrightarrow \mathbf{A}_{\mathbf{i}}^{\mathbf{x}}=\mathbf{A}_{\mathbf{i}}^{\mathbf{y}} \text { for } \mathbf{i} \leq \mathbf{n}
\end{aligned}
$$

$-u_{m}^{n}: X_{n} \rightarrow X_{m}$, for $m<n$, projection.

What's good about F_{n} ? Group action

$$
S_{\infty}=\operatorname{Sym}(\mathbb{N}), S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightsquigarrow=_{\mathbb{R}}^{+} \text {(on a large set). }
$$

What's good about F_{n} ? Group action

$S_{\infty}=\operatorname{Sym}(\mathbb{N}), S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightsquigarrow=_{\mathbb{R}}^{+}$(on a large set). Consider the action $S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$.

	\vdots	\vdots	\vdots	\vdots	
	$*$	1	0	1	\ldots
	$*$	1	1	0	\ldots
	$*$	0	1	1	\ldots
	$*$	0	1	0	\ldots
S_{∞}	\curvearrowright	\curvearrowright	\curvearrowright	\curvearrowright	

What's good about F_{n} ? Group action

$S_{\infty}=\operatorname{Sym}(\mathbb{N}), S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightsquigarrow=_{\mathbb{R}}^{+}$(on a large set). Consider the action $S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$.

F_{2} is induced (on a large set) by the action

$$
\mathbf{S}_{\infty} \times S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times\left(2^{\mathbb{N}}\right)^{\mathbb{N}}
$$

What's good about F_{n} ? Group action

$S_{\infty}=\operatorname{Sym}(\mathbb{N}), S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightsquigarrow=_{\mathbb{R}}^{+}$(on a large set).
Consider the action $S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$.

F_{2} is induced (on a large set) by the action

$$
\mathbf{S}_{\infty} \times S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times\left(2^{\mathbb{N}}\right)^{\mathbb{N}}
$$

Similarly: F_{n} is induced by a natural action of $\left(S_{\infty}\right)^{n}$ on $\left(\left(2^{\mathbb{N}}\right)^{\mathbb{N}}\right)^{n}$.

What's good about F_{n} ? Group action

$S_{\infty}=\operatorname{Sym}(\mathbb{N}), S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightsquigarrow=_{\mathbb{R}}^{+}$(on a large set).
Consider the action $S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$.

F_{2} is induced (on a large set) by the action

$$
\mathbf{S}_{\infty} \times S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times\left(2^{\mathbb{N}}\right)^{\mathbb{N}}
$$

Similarly: F_{n} is induced by a natural action of $\left(S_{\infty}\right)^{n}$ on $\left(\left(2^{\mathbb{N}}\right)^{\mathbb{N}}\right)^{n}$. In contrast, $=_{\mathbb{R}}^{++}$is naturally induced by an action of

$$
S_{\infty} \ltimes\left(S_{\infty}\right)^{\mathbb{N}} \text { on }\left(\mathbb{R}^{\mathbb{N}}\right)^{\mathbb{N}}
$$

What's good about F_{n} ? Borel complexity

Note: $={ }^{+}$is $\Pi_{3}^{0} ;=^{++}$is $\Pi_{5}^{0} ;=^{+++}$is Π_{7}^{0}.

What's good about F_{n} ? Borel complexity

Note: $=^{+}$is $\Pi_{3}^{0} ;=^{++}$is $\Pi_{5}^{0} ;=^{+++}$is Π_{7}^{0}.
Theorem (Hjorth-Kechris-Louveau 1998)
$={ }^{+n}$ is potentially $\boldsymbol{\Pi}_{n+2}^{0}$: it is Borel reducible to a $\boldsymbol{\Pi}_{n+2}^{0}$ ER. In fact it is maximal potentially Π_{n+2}^{0} for S_{∞}-actions.

What's good about F_{n} ? Borel complexity

Note: $=^{+}$is $\Pi_{3}^{0} ;=^{++}$is $\Pi_{5}^{0} ;=^{+++}$is Π_{7}^{0}.
Theorem (Hjorth-Kechris-Louveau 1998)
$={ }^{+n}$ is potentially $\boldsymbol{\Pi}_{n+2}^{0}$: it is Borel reducible to a $\boldsymbol{\Pi}_{n+2}^{0}$ ER. In fact it is maximal potentially Π_{n+2}^{0} for S_{∞}-actions.

Note:
F_{n} is Π_{n+2}^{0}.

What's good about F_{n} ? Borel complexity

Note: $=^{+}$is $\boldsymbol{\Pi}_{3}^{0} ;=^{++}$is $\Pi_{5}^{0} ;=^{+++}$is $\boldsymbol{\Pi}_{7}^{0}$.
Theorem (Hjorth-Kechris-Louveau 1998)
$={ }^{+n}$ is potentially $\boldsymbol{\Pi}_{n+2}^{0}$: it is Borel reducible to a $\boldsymbol{\Pi}_{n+2}^{0}$ ER. In fact it is maximal potentially Π_{n+2}^{0} for S_{∞}-actions.

Note:
F_{n} is Π_{n+2}^{0}.
e.g., F_{2} is Π_{4}^{0}. Main point: given x, y, we want

$$
\forall n \exists m\left(a_{1}^{x, n}=a_{1}^{y, m}\right)
$$

What's good about F_{n} ? Borel complexity

Note: $={ }^{+}$is $\Pi_{3}^{0} ;=^{++}$is $\Pi_{5}^{0} ;=^{+++}$is Π_{7}^{0}.
Theorem (Hjorth-Kechris-Louveau 1998)
$={ }^{+n}$ is potentially $\boldsymbol{\Pi}_{n+2}^{0}$: it is Borel reducible to a $\boldsymbol{\Pi}_{n+2}^{0}$ ER. In fact it is maximal potentially Π_{n+2}^{0} for S_{∞}-actions.

Note:
F_{n} is Π_{n+2}^{0}.
e.g., F_{2} is Π_{4}^{0}. Main point: given x, y, we want

$$
\forall n \exists m(\forall i, j[x(0)(i)=y(0)(j) \rightarrow x(1)(n)(i)=y(1)(m)(j)])
$$

$*$	1	1	0	$*$	0	1	1
$*$	0	1	1	$*$	0	0	0
$*$	0	1	0	$*$	1	1	0
$x(0)$	$x(1)(0)$	$x(1)(1)$	$x(1)(2)$	$y(0)$	$y(1)(0)$	$y(1)(1)$	$y(1)(2)$

Some ideas from the proof

Focus on the corollary: $F_{n} \leq_{B} F_{n} \upharpoonright C$ for any comeager C.

Some ideas from the proof

Focus on the corollary: $F_{n} \leq_{B} F_{n} \upharpoonright C$ for any comeager C. The case $n=1$. $C \subseteq\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$. Roughly:
Fix map $g: 2^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$ s.t. for $a \neq b \in 2^{\mathbb{N}}, g(a), g(b)$ are "sufficiently generic".

Some ideas from the proof

Focus on the corollary: $F_{n} \leq_{B} F_{n} \upharpoonright C$ for any comeager C.
The case $n=1 . C \subseteq\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$. Roughly:
Fix map $g: 2^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$ s.t. for $a \neq b \in 2^{\mathbb{N}}, g(a), g(b)$ are "sufficiently generic". Define $f:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$

$$
f(x)(n, m)=g(x(n))(m), f:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N} \times \mathbb{N}} \sim\left(2^{\mathbb{N}}\right)^{\mathbb{N}}
$$

Some ideas from the proof

Focus on the corollary: $F_{n} \leq_{B} F_{n} \upharpoonright C$ for any comeager C.
The case $n=1 . C \subseteq\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$. Roughly:
Fix map $g: 2^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$ s.t. for $a \neq b \in 2^{\mathbb{N}}, g(a), g(b)$ are "sufficiently generic". Define $f:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$

$$
f(x)(n, m)=g(x(n))(m), f:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N} \times \mathbb{N}} \sim\left(2^{\mathbb{N}}\right)^{\mathbb{N}}
$$

(Not true that $g(x) \in C$, but $\forall^{*} \pi \in S_{\infty}, \pi \cdot f(x) \in C$.)

Some ideas from the proof

Focus on the corollary: $F_{n} \leq_{B} F_{n} \upharpoonright C$ for any comeager C.
The case $n=1$. $C \subseteq\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$. Roughly:
Fix map $g: 2^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$ s.t. for $a \neq b \in 2^{\mathbb{N}}, g(a), g(b)$ are "sufficiently generic". Define $f:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$

$$
f(x)(n, m)=g(x(n))(m), f:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N} \times \mathbb{N}} \sim\left(2^{\mathbb{N}}\right)^{\mathbb{N}}
$$

(Not true that $g(x) \in C$, but $\forall^{*} \pi \in S_{\infty}, \pi \cdot f(x) \in C$.)
Naive hope towards $n \geq 2$.
Would want some $g:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times 2^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$, taking some set of reals A_{1}^{\times}and some subset $a \subseteq A_{1}^{\times}$, to infinitely many "very distinct" subsets of A_{1}^{\times}.

Some ideas from the proof

Focus on the corollary: $F_{n} \leq_{B} F_{n} \upharpoonright C$ for any comeager C.
The case $n=1$. $C \subseteq\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$. Roughly:
Fix map $g: 2^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$ s.t. for $a \neq b \in 2^{\mathbb{N}}, g(a), g(b)$ are "sufficiently generic". Define $f:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$

$$
f(x)(n, m)=g(x(n))(m), f:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N} \times \mathbb{N}} \sim\left(2^{\mathbb{N}}\right)^{\mathbb{N}}
$$

(Not true that $g(x) \in C$, but $\forall^{*} \pi \in S_{\infty}, \pi \cdot f(x) \in C$.)
Naive hope towards $n \geq 2$.
Would want some $g:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times 2^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$, taking some set of reals A_{1}^{\times}and some subset $a \subseteq A_{1}^{\times}$, to infinitely many "very distinct" subsets of A_{1}^{x}.
This cannot be done in a way which is independent of the enumeration of A_{1}^{x}.

Some ideas for $n \geq 2$

Small modification to $n=1$ case: Fix $g_{1}:\left(2^{\mathbb{N}}\right)^{<\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ s.t. for $a \neq b \in\left(2^{\mathbb{N}}\right)^{<\mathbb{N}}, g(a), g(b)$ are "sufficiently generic". Define

$$
f_{1}:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}<\mathbb{N}}, \quad f_{1}(x)(t)=g_{1}(x \circ t)
$$

Some ideas for $n \geq 2$

Small modification to $n=1$ case: Fix $g_{1}:\left(2^{\mathbb{N}}\right)^{<\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ s.t. for $a \neq b \in\left(2^{\mathbb{N}}\right)^{<\mathbb{N}}, g(a), g(b)$ are "sufficiently generic". Define

$$
f_{1}:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}<\mathbb{N}}, \quad f_{1}(x)(t)=g_{1}(x \circ t)
$$

Fix $G: 2^{<\mathbb{N}} \rightarrow 2$ "sufficiently generic". Define

$$
g_{2}: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}^{<\mathbb{N}}}, \quad g_{2}(x)(t)=G(x \circ t)
$$

Some ideas for $n \geq 2$

Small modification to $n=1$ case: Fix $g_{1}:\left(2^{\mathbb{N}}\right)^{<\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ s.t. for $a \neq b \in\left(2^{\mathbb{N}}\right)^{<\mathbb{N}}, g(a), g(b)$ are "sufficiently generic". Define

$$
f_{1}:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}<\mathbb{N}}, \quad f_{1}(x)(t)=g_{1}(x \circ t)
$$

Fix $G: 2^{<\mathbb{N}} \rightarrow 2$ "sufficiently generic". Define

$$
\begin{gathered}
g_{2}: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}^{<\mathbb{N}}}, \quad g_{2}(x)(t)=G(x \circ t) \\
\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times 2^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}<\mathbb{N}} \times 2^{\mathbb{N}^{<\mathbb{N}}}
\end{gathered}
$$

is invariant under the actions

$$
S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times 2^{\mathbb{N}}, \quad \operatorname{Sym}\left(\mathbb{N}^{<\mathbb{N}}\right) \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}^{<\mathbb{N}}} \times 2^{\mathbb{N}<\mathbb{N}}
$$

Some ideas for $n \geq 2$

Small modification to $n=1$ case: Fix $g_{1}:\left(2^{\mathbb{N}}\right)^{<\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ s.t. for $a \neq b \in\left(2^{\mathbb{N}}\right)^{<\mathbb{N}}, g(a), g(b)$ are "sufficiently generic". Define

$$
f_{1}:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}<\mathbb{N}}, \quad f_{1}(x)(t)=g_{1}(x \circ t)
$$

Fix $G: 2^{<\mathbb{N}} \rightarrow 2$ "sufficiently generic". Define

$$
\begin{gathered}
g_{2}: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}^{<\mathbb{N}}}, \quad g_{2}(x)(t)=G(x \circ t) \\
\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times 2^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}<\mathbb{N}} \times 2^{\mathbb{N}<\mathbb{N}}
\end{gathered}
$$

is invariant under the actions

$$
S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times 2^{\mathbb{N}}, \quad \operatorname{Sym}\left(\mathbb{N}^{<\mathbb{N}}\right) \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}^{<\mathbb{N}}} \times 2^{\mathbb{N}<\mathbb{N}}
$$

E.g.: given $\zeta, \xi \in 2^{\mathbb{N}}$, want the subsets corresponding to $g(\zeta), g(\xi)$ to be "very different". On the set on all $t \in \mathbb{N}<\mathbb{N}$ for which $\zeta \circ t, \xi \circ t$ are different, the subsets behave like G,

Some ideas for $n \geq 2$

Small modification to $n=1$ case: Fix $g_{1}:\left(2^{\mathbb{N}}\right)^{<\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ s.t. for $a \neq b \in\left(2^{\mathbb{N}}\right)^{<\mathbb{N}}, g(a), g(b)$ are "sufficiently generic". Define

$$
f_{1}:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N}<\mathbb{N}}, \quad f_{1}(x)(t)=g_{1}(x \circ t)
$$

Fix $G:\left(2^{<\mathbb{N}}\right)^{<\mathbb{N}} \rightarrow 2$ "sufficiently generic". Define

$$
\begin{aligned}
& g_{2}:\left(2^{\mathbb{N}}\right)^{<\mathbb{N}} \rightarrow 2^{\mathbb{N}<\mathbb{N}}, g_{2}(x)(t)=G(x \circ t) . \\
& f_{2}:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow\left(2^{\mathbb{N}}\right)^{\mathbb{N} \mathbb{N}} \times\left(2^{\mathbb{N}<\mathbb{N}}\right)^{\mathbb{N}^{<N}} \\
& \sim\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times\left(2^{\mathbb{N}}\right)^{\mathbb{N}<\mathbb{N}}
\end{aligned}
$$

is invariant under the actions

$$
\begin{aligned}
& S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times\left(2^{\mathbb{N}}\right)^{\mathbb{N}}, \operatorname{Sym}\left(\mathbb{N}^{<\mathbb{N}}\right) \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}^{<\mathbb{N}}} \times\left(2^{\mathbb{N}<\mathbb{N}}\right)^{\mathbb{N}<\mathbb{N}} \\
& S_{\infty} \quad \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times\left(2^{\mathbb{N}}\right)^{\mathbb{N}^{<\mathbb{N}}}
\end{aligned}
$$

