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Borel homomorphisms and reductions

An equivalence relation E on a Polish space X is
analytic (Borel) if E C X x X is analytic (Borel).
Definition
Let E and F be equivalence relations on Polish spaces
X and Y respectively. f: X — Y a Borel map.
» f is a Borel homomorphism, f: E —g F, if
xE X' = f(x)F f(x).
» f is a Borel reduction of E to F if
xEx' < f(x) F f(x).
» E is Borel reducible to F, denoted E <pg F,
if there is a Borel reduction of E to F.
» E.F are Borel bireducible (E ~5 F) if E<g F & F <g E.
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Definition
Let E and F be equivalence relations on Polish spaces
X and Y respectively. f: X — Y a Borel map.
» f is a Borel homomorphism, f: E —g F, if
xE X' = f(x)F f(x).
» f is a Borel reduction of E to F if
xEx' < f(x) F f(x).
» E is Borel reducible to F, denoted E <pg F,
if there is a Borel reduction of E to F.
» E.F are Borel bireducible (E ~5 F) if E<g F & F <g E.

Some motivations:
e “Borel definable” cardinality for definable quotient spaces.
e Possible complete invariants for classification problems.
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Friedman-Stanley jump / countable powerset operation

Definition
Let £ be an equivalence relation on a Polish space X.
Define ET on the Polish space XY by

x ETy <= VYndm(x(n) E y(m)) & ¥nIm(y(n) E x(m)),

that is, {[x(n)]g; n € N} = {[y(n)]e; n € N}.

» The countable powerset operation Py,(—), for the quotient
X/E, coded on a Polish space.
» Classifiability using hereditarily countable invariants.

» E is concretely classifiable if E <g =g, equality ER on R.
(Numerical invariants.)
» E is classifiable using countable sets of reals as invariants if

E<pg=.
» Countable sets of countable sets of reals as invariants:
_++
E<p=3".

> ...
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Today's goal:
For n < w, develop methods to prove that :ﬁg" <pg E for some E.

Remark:
For :ﬁ, the situation is well understood. Some examples:
» Foreman - Louveau 1995: :ﬁ is Borel bireducible with the
classification problem of ergodic discrete spectrum measure
preserving transformations.

> Marker 2007: Let T be a first order theory whose space of
types is uncountable. Then =} <g 7.
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Generic dichotomy for Borel homomorphisms

Theorem (Kanovei-Sabok-Zapletal 2013)
Let £ be an analytic equivalence relation. Then either
> zﬁ is Borel reducible to E, or

» any Borel homomorphism from = to E maps a comeager
subset of RN into a single E-class.

Theorem (Marker 2007)
T first order theory, uncountable type space. Then :I"Rf <g =r7.
» Fix a perfect set of types C, identified with R.
» Naive idea: map a countable set of reals A C C to a model M
satisfying “precisely” A.
» Can be done if A is a Scott set: sufficiently closed under some
countably many operations.
» Improved idea: A+ closure(A) — M.
» This gives a Borel homomorphism, not trivial on comeager
sets. Therefore =} <pg ~7.
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Some difficulties in generalizing for n > 2

Already for =%+

» On a comeager subset C C (RM)Y, (:ﬁ‘{f I C) <g :E_
» There is a non-trivial Borel homomorphism from :;{# to :ﬁ.

That is, the union map (x;j | i,j € N) — (x<jj> | i,j € N).

More generally:
» For n> 2, need a different presentation / topology.

» Need to consider the homomorphisms :ﬁ" —B :I'Rfk, k < n,
essentially taking a hereditarily countable set of rank n to the
set of its rank k elements.
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Main result

Theorem (S.)
There are equivalence relations Fj, on Polish spaces X, s.t.
1. Foep=g" ,n=1,2,3,...,w, and
there are Borel homomorphism u}: F, =g Fx, k <n < w, s.t.

2. for any analytic equivalence relation E either

» F, is Borel reducible to E, or

» every Borel homomorphism f: F, =g E factors through u] on
a comeager set, for k < n. (That is, there is a homomorphism
h: Fx —g E so that (ho u) E f on a comeager set.)

To prove that Fn

:[‘Rt” <g E, enough . f

to find a non-trivial k
homomorphism. Fy -- h s E

Figure: (Vf: F, =g E)(3k < n3h: Fx — E)



An application to a question of Clemens
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The following answers positively a question of Clemens.

Theorem (S.)
For any analytic equivalence relation E, either

>
>

=tw <g E, or

any Borel homomorphism f: =T% —g E, =% retains its
complexity on a fiber, that is, there is y in the domain of E so
that =" is Borel reducible to ="“| {x; f(x) E y}.

That is, =% is prime.

>
>

Can replace =% with F_,.

By the main theorem, if F, £g E, then any f: F, =g E
factors through vy for some k, on a comeager set.

From the definitions, F,, is equivalent to its restriction to any
fiber of uy.

It remains to show that F,, retains its complexity on comeager
sets: F, <g F, | C for any comeager C.
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Theorem (S.)
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For n > 1, the theorem fails for = —R , so the F,’s are necessary.

» Fix a comeager set C (assume it is Fn-invariant). Fix
f: F, =B F, | C which is the identity on C.

» From the definitions, u} is not a reduction on any comeager
set, for k < n.

» So f does not factor through uf, for k < n.
» By the main theorem, F, <g F, | C.
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Definition of F, and v,

> X, C ((2M)N)", for n=1,2,3,...,w. Fix x € X,.
> AY = {x(0)(k); k € N} C 2N,

ay! = {x(0)(k); x(1)(/)(k) =1} C A}

X X,/ . oxl X,k . x
> AN = {al ,/eN}, = {al  x(2)(1)(k) = }gA2.
xFoy < A=A fori<n

» up: X, = Xm, for m < n, projection.
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Soo = Sym(N), Soo ~ (2NN ~s =7 (on a large set).
Consider the action S, ~ (2")N.

1 0
1 1
0 1

* 0 1

Seo ™ N N N
F> is induced (on a large set) by the action
Soo X S0 v (2NN x (2

Similarly: F, is induced by a natural action of (S5 )" on ((2M)M)".

In contrast, :§+ is naturally induced by an action of

Seo X (Soo)™ on (RM)N
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What's good about F,? Borel complexity

Note: =T is M3; =T+ isN?; =++is NY.
Theorem (Hjorth-Kechris-Louveau 1998)

=""is potentially M2 ,: it is Borel reducible to a M2, ER.
In fact it is maximal potentially M9, , for S.-actions.

Note:
FpisN9,,.

e.g., Fris I'Ig. Main point: given x, y, we want

vnam(Vi, j[x(0)(7) = y(0)(j) = x(1)(n)(7) = y(1)(m)()])
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The case n = 1. C C (2¥)N. Roughly:
Fix map g: 28 — (2M)N s.t. for a # b € 2V, g(a), g(b) are
“sufficiently generic”. Define f: (2N)N — (2NN

F(x)(n,m) = g(x(n))(m), f: (25 — (27 ~ (27)7
(Not true that g(x) € C, but V*r € S, m- f(x) € C.)

Naive hope towards n > 2.

Would want some g: (2M)N x 2N — (2M)N x (2NN taking some
set of reals AY and some subset a C A}, to infinitely many “very
distinct” subsets of AJ.

This cannot be done in a way which is independent of the
enumeration of AJ.
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Some ideas for n > 2

Small modification to n = 1 case: Fix g1: (2¥)<N — 2N s t. for
a# bec (2N)N g(a), g(b) are “sufficiently generic”. Define

fi: @YY 5 @) A(x)(t) = gix o t)
Fix G: (2<N)<N — 2 “sufficiently generic’. Define
g (2NN 52 g (x)(t) = G(x o t).
f23 (2N)N « (2N)N _>(2N)N<N « (2N<N)N<N
N(2N)N « (2N)N<N
is invariant under the actions

Soo ™ (29 x (2N, Sym(N<N) A (2NN 5 (2N

S A EHY x @OV



