# Generic analysis of Borel homomorphisms for the finite Friedman-Stanley jumps

Assaf Shani

Concordia University

#### Descriptive set theory & dynamics conference Warsaw, August 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Research partially supported by NSF grant DMS-2246746.

# Borel homomorphisms and reductions

An equivalence relation E on a Polish space X is **analytic (Borel)** if  $E \subseteq X \times X$  is analytic (Borel).

Definition

Let *E* and *F* be equivalence relations on Polish spaces *X* and *Y* respectively.  $f: X \rightarrow Y$  a Borel map.

- ► f is a Borel homomorphism,  $f: E \to_B F$ , if  $x E x' \implies f(x) F f(x')$ .
- f is a **Borel reduction** of E to F if  $x E x' \iff f(x) F f(x')$ .
- ▶ *E* is Borel reducible to *F*, denoted  $E \leq_B F$ , if there is a Borel reduction of *E* to *F*.
- E, F are **Borel bireducible**  $(E \sim_B F)$  if  $E \leq_B F \& F \leq_B E$ .



# Borel homomorphisms and reductions

An equivalence relation E on a Polish space X is **analytic (Borel)** if  $E \subseteq X \times X$  is analytic (Borel).

Definition

Let *E* and *F* be equivalence relations on Polish spaces *X* and *Y* respectively.  $f: X \rightarrow Y$  a Borel map.

- ► f is a Borel homomorphism,  $f: E \to_B F$ , if  $x E x' \implies f(x) F f(x')$ .
- ► f is a **Borel reduction** of E to F if  $x \in x' \iff f(x) \notin f(x')$ .
- ▶ *E* is Borel reducible to *F*, denoted  $E \leq_B F$ , if there is a Borel reduction of *E* to *F*.
- E, F are **Borel bireducible**  $(E \sim_B F)$  if  $E \leq_B F \& F \leq_B E$ .

#### Some motivations:

• "Borel definable" cardinality for definable quotient spaces.



# Borel homomorphisms and reductions

An equivalence relation E on a Polish space X is **analytic (Borel)** if  $E \subseteq X \times X$  is analytic (Borel).

### Definition

Let *E* and *F* be equivalence relations on Polish spaces *X* and *Y* respectively.  $f: X \rightarrow Y$  a Borel map.

- ► f is a Borel homomorphism,  $f: E \to_B F$ , if  $x E x' \implies f(x) F f(x')$ .
- ► f is a **Borel reduction** of E to F if  $x \in x' \iff f(x) \notin f(x')$ .
- ▶ *E* is Borel reducible to *F*, denoted  $E \leq_B F$ , if there is a Borel reduction of *E* to *F*.
- E, F are **Borel bireducible**  $(E \sim_B F)$  if  $E \leq_B F \& F \leq_B E$ .

#### Some motivations:

- "Borel definable" cardinality for definable quotient spaces.
- Possible complete invariants for classification problems.



Let *E* be an equivalence relation on a Polish space *X*. Define  $E^+$  on the Polish space  $X^{\mathbb{N}}$  by

 $x E^+ y \iff \forall n \exists m(x(n) E y(m)) \& \forall n \exists m(y(n) E x(m)),$ 

that is,  $\{[x(n)]_E; n \in \mathbb{N}\} = \{[y(n)]_E; n \in \mathbb{N}\}.$ 

Let *E* be an equivalence relation on a Polish space *X*. Define  $E^+$  on the Polish space  $X^{\mathbb{N}}$  by

$$x E^+ y \iff \forall n \exists m(x(n) E y(m)) \& \forall n \exists m(y(n) E x(m)),$$

that is,  $\{[x(n)]_E; n \in \mathbb{N}\} = \{[y(n)]_E; n \in \mathbb{N}\}.$ 

► The countable powerset operation P<sub>ℵ0</sub>(−), for the quotient X/E, coded on a Polish space.

Let *E* be an equivalence relation on a Polish space *X*. Define  $E^+$  on the Polish space  $X^{\mathbb{N}}$  by

 $x E^+ y \iff \forall n \exists m(x(n) E y(m)) \& \forall n \exists m(y(n) E x(m)),$ 

that is,  $\{[x(n)]_E; n \in \mathbb{N}\} = \{[y(n)]_E; n \in \mathbb{N}\}.$ 

- ► The countable powerset operation P<sub>ℵ0</sub>(−), for the quotient X/E, coded on a Polish space.
- Classifiability using hereditarily countable invariants.
  - ► E is concretely classifiable if E ≤<sub>B</sub> =<sub>R</sub>, equality ER on R. (Numerical invariants.)

Let *E* be an equivalence relation on a Polish space *X*. Define  $E^+$  on the Polish space  $X^{\mathbb{N}}$  by

 $x E^+ y \iff \forall n \exists m(x(n) E y(m)) \& \forall n \exists m(y(n) E x(m)),$ 

that is,  $\{[x(n)]_E; n \in \mathbb{N}\} = \{[y(n)]_E; n \in \mathbb{N}\}.$ 

- ► The countable powerset operation P<sub>ℵ0</sub>(−), for the quotient X/E, coded on a Polish space.
- Classifiability using hereditarily countable invariants.
  - ► E is concretely classifiable if E ≤<sub>B</sub> =<sub>R</sub>, equality ER on R. (Numerical invariants.)
  - E is classifiable using countable sets of reals as invariants if E ≤<sub>B</sub> =<sup>+</sup><sub>ℝ</sub>.

Let *E* be an equivalence relation on a Polish space *X*. Define  $E^+$  on the Polish space  $X^{\mathbb{N}}$  by

 $x E^+ y \iff \forall n \exists m(x(n) E y(m)) \& \forall n \exists m(y(n) E x(m)),$ 

that is,  $\{[x(n)]_E; n \in \mathbb{N}\} = \{[y(n)]_E; n \in \mathbb{N}\}.$ 

- ► The countable powerset operation P<sub>ℵ0</sub>(−), for the quotient X/E, coded on a Polish space.
- Classifiability using hereditarily countable invariants.
  - ► E is concretely classifiable if E ≤<sub>B</sub> =<sub>R</sub>, equality ER on R. (Numerical invariants.)
  - E is classifiable using countable sets of reals as invariants if E ≤<sub>B</sub> =<sup>+</sup><sub>ℝ</sub>.

Countable sets of countable sets of reals as invariants:

$$E \leq_B =_{\mathbb{R}}^+$$

. . .

#### Very general goal:

#### Given equivalence relation *E* and *F*, is $E \leq_B F$ ?



#### Very general goal:

Given equivalence relation E and F, is  $E \leq_B F$ ?

### Today's goal:

For  $n \leq \omega$ , develop methods to prove that  $=_{\mathbb{R}}^{+n} \leq_B E$  for some E.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Very general goal:

Given equivalence relation E and F, is  $E \leq_B F$ ?

### Today's goal:

For  $n \leq \omega$ , develop methods to prove that  $=_{\mathbb{R}}^{+n} \leq_B E$  for some E.

#### Remark:

For  $=_{\mathbb{R}}^{+}$ , the situation is well understood. Some examples:

- ► Foreman Louveau 1995: =<sup>+</sup><sub>R</sub> is Borel bireducible with the classification problem of ergodic discrete spectrum measure preserving transformations.
- Marker 2007: Let T be a first order theory whose space of types is uncountable. Then =<sup>+</sup><sub>ℝ</sub> ≤<sub>B</sub> ≅<sub>T</sub>.

### Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

• 
$$=^+_{\mathbb{R}}$$
 is Borel reducible to *E*, or

Any Borel homomorphism from =<sup>+</sup><sub>ℝ</sub> to E maps a comeager subset of ℝ<sup>N</sup> into a single E-class.

### Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

• 
$$=^+_{\mathbb{R}}$$
 is Borel reducible to *E*, or

Any Borel homomorphism from =<sup>+</sup><sub>ℝ</sub> to E maps a comeager subset of ℝ<sup>N</sup> into a single E-class.

## Theorem (Marker 2007)

T first order theory, uncountable type space. Then  $=_{\mathbb{R}}^{+} \leq_{B} \cong_{T}$ .

### Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

- $\blacktriangleright$  =<sup>+</sup><sub> $\mathbb{R}$ </sub> is Borel reducible to *E*, or
- Any Borel homomorphism from =<sup>+</sup><sub>ℝ</sub> to E maps a comeager subset of ℝ<sup>N</sup> into a single E-class.

## Theorem (Marker 2007)

- T first order theory, uncountable type space. Then  $=_{\mathbb{R}}^{+} \leq_{B} \cong_{T}$ .
  - Fix a perfect set of types C, identified with  $\mathbb{R}$ .
  - Naive idea: map a countable set of reals A ⊆ C to a model M satisfying "precisely" A.

### Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

- $\blacktriangleright$  =<sup>+</sup><sub> $\mathbb{R}$ </sub> is Borel reducible to *E*, or
- Any Borel homomorphism from =<sup>+</sup><sub>ℝ</sub> to E maps a comeager subset of ℝ<sup>N</sup> into a single E-class.

### Theorem (Marker 2007)

- T first order theory, uncountable type space. Then  $=_{\mathbb{R}}^{+} \leq_{B} \cong_{T}$ .
  - Fix a perfect set of types C, identified with  $\mathbb{R}$ .
  - Naive idea: map a countable set of reals A ⊆ C to a model M satisfying "precisely" A.
  - Can be done if A is a Scott set: sufficiently closed under some countably many operations.

### Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

- ▶  $=^+_{\mathbb{R}}$  is Borel reducible to *E*, or
- Any Borel homomorphism from =<sup>+</sup><sub>ℝ</sub> to E maps a comeager subset of ℝ<sup>N</sup> into a single E-class.

### Theorem (Marker 2007)

- T first order theory, uncountable type space. Then  $=_{\mathbb{R}}^{+} \leq_{B} \cong_{T}$ .
  - Fix a perfect set of types C, identified with  $\mathbb{R}$ .
  - Naive idea: map a countable set of reals A ⊆ C to a model M satisfying "precisely" A.
  - Can be done if A is a Scott set: sufficiently closed under some countably many operations.
  - ▶ Improved idea:  $A \mapsto \operatorname{closure}(A) \mapsto M$ .

### Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

- $\blacktriangleright$  =<sup>+</sup><sub> $\mathbb{R}$ </sub> is Borel reducible to *E*, or
- Any Borel homomorphism from =<sup>+</sup><sub>ℝ</sub> to E maps a comeager subset of ℝ<sup>N</sup> into a single E-class.

### Theorem (Marker 2007)

- T first order theory, uncountable type space. Then  $=_{\mathbb{R}}^{+} \leq_{B} \cong_{T}$ .
  - Fix a perfect set of types C, identified with  $\mathbb{R}$ .
  - Naive idea: map a countable set of reals A ⊆ C to a model M satisfying "precisely" A.
  - Can be done if A is a Scott set: sufficiently closed under some countably many operations.
  - ▶ Improved idea:  $A \mapsto \text{closure}(A) \mapsto M$ .
  - ► This gives a Borel homomorphism, not trivial on comeager sets. Therefore =<sup>+</sup><sub>R</sub> ≤<sub>B</sub> ≃<sub>T</sub>.

### Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

$$\blacktriangleright =_{\mathbb{R}}^{+}$$
 is Borel reducible to *E*, or

▶ any  $f := {}^+_{\mathbb{R}} \to_B E$  maps a comeager set into a single *E*-class.

Already for  $=_{\mathbb{R}}^{++}$ :



### Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

$$\blacktriangleright =_{\mathbb{R}}^{+}$$
 is Borel reducible to *E*, or

▶ any  $f : =_{\mathbb{R}}^+ \rightarrow_B E$  maps a comeager set into a single *E*-class.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Already for $=_{\mathbb{R}}^{++}$ :

▶ On a comeager subset  $C \subseteq (\mathbb{R}^{\mathbb{N}})^{\mathbb{N}}$ ,  $(=_{\mathbb{R}}^{++} \upharpoonright C) \leq_{B} =_{\mathbb{R}}^{+}$ .

### Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

$$\blacktriangleright =_{\mathbb{R}}^{+}$$
 is Borel reducible to *E*, or

▶ any  $f : =_{\mathbb{R}}^+ \rightarrow_B E$  maps a comeager set into a single *E*-class.

# Already for $=_{\mathbb{R}}^{++}$ :

- ▶ On a comeager subset  $C \subseteq (\mathbb{R}^{\mathbb{N}})^{\mathbb{N}}$ ,  $(=_{\mathbb{R}}^{++} \upharpoonright C) \leq_{B} =_{\mathbb{R}}^{+}$ .
- ▶ There is a non-trivial Borel homomorphism from  $=_{\mathbb{R}}^{++}$  to  $=_{\mathbb{R}}^{+}$ . That is, the union map  $\langle x_{i,j} | i, j \in \mathbb{N} \rangle \mapsto \langle x_{\langle i,j \rangle} | i, j \in \mathbb{N} \rangle$ .

### Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

• 
$$=^+_{\mathbb{R}}$$
 is Borel reducible to *E*, or

▶ any  $f : =_{\mathbb{R}}^+ \rightarrow_B E$  maps a comeager set into a single *E*-class.

# Already for $=_{\mathbb{R}}^{++}$ :

- ▶ On a comeager subset  $C \subseteq (\mathbb{R}^{\mathbb{N}})^{\mathbb{N}}$ ,  $(=_{\mathbb{R}}^{++} \upharpoonright C) \leq_{B} =_{\mathbb{R}}^{+}$ .
- ▶ There is a non-trivial Borel homomorphism from  $=_{\mathbb{R}}^{++}$  to  $=_{\mathbb{R}}^{+}$ . That is, the union map  $\langle x_{i,j} | i, j \in \mathbb{N} \rangle \mapsto \langle x_{\langle i,j \rangle} | i, j \in \mathbb{N} \rangle$ .

#### More generally:

- For  $n \ge 2$ , need a different presentation / topology.
- Need to consider the homomorphisms =<sup>+n</sup><sub>ℝ</sub> →<sub>B</sub> =<sup>+k</sup><sub>ℝ</sub>, k < n, essentially taking a hereditarily countable set of rank n to the set of its rank k elements.</p>

# Theorem (S.)

There are equivalence relations  $F_n$  on Polish spaces  $X_n$ , s.t.

1. 
$$F_n \sim_B =_{\mathbb{R}}^{+n}$$
,  $n = 1, 2, 3, \dots, \omega$ , and

there are Borel homomorphism  $u_k^n \colon F_n \to_B F_k$ ,  $k < n \le \omega$ , s.t.

# Theorem (S.)

There are equivalence relations  $F_n$  on Polish spaces  $X_n$ , s.t.

1. 
$$F_n \sim_B =_{\mathbb{R}}^{+n}$$
,  $n = 1, 2, 3, \dots, \omega$ , and

there are Borel homomorphism  $u_k^n \colon F_n \to_B F_k$ ,  $k < n \le \omega$ , s.t.

- 2. for any analytic equivalence relation E either
  - $F_n$  is Borel reducible to E, or
  - ▶ every Borel homomorphism  $f: F_n \to_B E$  factors through  $u_k^n$  on a comeager set, for k < n. (That is, there is a homomorphism  $h: F_k \to_B E$  so that  $(h \circ u) E f$  on a comeager set.)

# Theorem (S.)

There are equivalence relations  $F_n$  on Polish spaces  $X_n$ , s.t.

1. 
$$F_n \sim_B =_{\mathbb{R}}^{+n}$$
,  $n = 1, 2, 3, \dots, \omega$ , and

there are Borel homomorphism  $u_k^n \colon F_n \to_B F_k$ ,  $k < n \leq \omega$ , s.t.

- 2. for any analytic equivalence relation E either
  - $\triangleright$   $F_n$  is Borel reducible to E, or
  - every Borel homomorphism  $f: F_n \rightarrow_B E$  factors through  $u_k^n$  on a comeager set, for k < n. (That is, there is a homomorphism h:  $F_k \rightarrow_B E$  so that  $(h \circ u) E f$  on a comeager set.)



Figure:  $(\forall f : F_n \rightarrow_B E)(\exists k < n \exists h : F_k \rightarrow E)$ ・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

# Theorem (S.)

There are equivalence relations  $F_n$  on Polish spaces  $X_n$ , s.t.

1. 
$$F_n \sim_B =_{\mathbb{R}}^{+n}$$
,  $n = 1, 2, 3, \dots, \omega$ , and

there are Borel homomorphism  $u_k^n \colon F_n \to_B F_k$ ,  $k < n \le \omega$ , s.t.

- 2. for any analytic equivalence relation E either
  - $F_n$  is Borel reducible to E, or
  - ▶ every Borel homomorphism  $f: F_n \rightarrow_B E$  factors through  $u_k^n$  on a comeager set, for k < n. (That is, there is a homomorphism  $h: F_k \rightarrow_B E$  so that  $(h \circ u) E f$  on a comeager set.)

To prove that  $=_{\mathbb{R}}^{+n} \leq_{B} E$ , enough to find a non-trivial homomorphism.



Figure:  $(\forall f: F_n \to_B E)(\exists k < n \exists h: F_k \to E)$ 

The following answers positively a question of Clemens.

Theorem (S.)

For any analytic equivalence relation E, either

$$\blacktriangleright$$
 =<sup>+ $\omega$</sup>   $\leq_B E$ , or

any Borel homomorphism f: =<sup>+ω</sup>→<sub>B</sub> E, =<sup>+ω</sup> retains its complexity on a fiber, that is, there is y in the domain of E so that =<sup>+ω</sup> is Borel reducible to =<sup>+ω</sup> ↾ {x; f(x) E y}.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

That is,  $=^{+\omega}$  is prime.

The following answers positively a question of Clemens.

Theorem (S.)

For any analytic equivalence relation E, either

$$\blacktriangleright$$
 =<sup>+ $\omega$</sup>   $\leq_B E$ , or

any Borel homomorphism f : =<sup>+ω</sup> →<sub>B</sub> E, =<sup>+ω</sup> retains its complexity on a fiber, that is, there is y in the domain of E so that =<sup>+ω</sup> is Borel reducible to =<sup>+ω</sup> ↾ {x; f(x) E y}.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

That is,  $=^{+\omega}$  is prime.

• Can replace 
$$=^{+\omega}$$
 with  $F_{\omega}$ .

The following answers positively a question of Clemens.

Theorem (S.)

For any analytic equivalence relation E, either

$$\blacktriangleright$$
 =<sup>+ $\omega$</sup>  ≤<sub>B</sub> *E*, or

any Borel homomorphism f : =<sup>+ω</sup> →<sub>B</sub> E, =<sup>+ω</sup> retains its complexity on a fiber, that is, there is y in the domain of E so that =<sup>+ω</sup> is Borel reducible to =<sup>+ω</sup> ↾ {x; f(x) E y}.

That is,  $=^{+\omega}$  is prime.

- Can replace  $=^{+\omega}$  with  $F_{\omega}$ .
- By the main theorem, if F<sub>ω</sub> ≤<sub>B</sub> E, then any f: F<sub>ω</sub> →<sub>B</sub> E factors through u<sup>ω</sup><sub>k</sub> for some k, on a comeager set.

The following answers positively a question of Clemens.

Theorem (S.)

For any analytic equivalence relation E, either

$$\blacktriangleright$$
 =<sup>+ $\omega$</sup>  ≤<sub>B</sub> *E*, or

any Borel homomorphism f: =<sup>+ω</sup>→<sub>B</sub> E, =<sup>+ω</sup> retains its complexity on a fiber, that is, there is y in the domain of E so that =<sup>+ω</sup> is Borel reducible to =<sup>+ω</sup> ↾ {x; f(x) E y}.

That is,  $=^{+\omega}$  is prime.

- Can replace  $=^{+\omega}$  with  $F_{\omega}$ .
- By the main theorem, if F<sub>ω</sub> ≤<sub>B</sub> E, then any f: F<sub>ω</sub> →<sub>B</sub> E factors through u<sup>ω</sup><sub>k</sub> for some k, on a comeager set.
- From the definitions,  $F_{\omega}$  is equivalent to its restriction to any fiber of  $u_k^{\omega}$ .

The following answers positively a question of Clemens.

Theorem (S.)

For any analytic equivalence relation E, either

$$\blacktriangleright$$
 =<sup>+ $\omega$</sup>  ≤<sub>B</sub> *E*, or

any Borel homomorphism f: =<sup>+ω</sup>→<sub>B</sub> E, =<sup>+ω</sup> retains its complexity on a fiber, that is, there is y in the domain of E so that =<sup>+ω</sup> is Borel reducible to =<sup>+ω</sup> ↾ {x; f(x) E y}.

That is,  $=^{+\omega}$  is prime.

- Can replace  $=^{+\omega}$  with  $F_{\omega}$ .
- By the main theorem, if F<sub>ω</sub> ≤<sub>B</sub> E, then any f: F<sub>ω</sub> →<sub>B</sub> E factors through u<sup>ω</sup><sub>k</sub> for some k, on a comeager set.
- From the definitions,  $F_{\omega}$  is equivalent to its restriction to any fiber of  $u_k^{\omega}$ .
- ► It remains to show that  $F_{\omega}$  retains its complexity on comeager sets:  $F_{\omega} \leq_B F_{\omega} \upharpoonright C$  for any comeager C.

For any  $n \le \omega$ ,  $F_n$  retains its complexity on comeager sets:  $F_n \le_B F_n \upharpoonright C$  for any comeager set C.

In particular,  $=_{\mathbb{R}}^{+n}$  is in the **spectrum of the meager ideal**. This was proved by Kanovei, Sabok, and Zapletal for n = 1. For n > 1, the theorem fails for  $=_{\mathbb{R}}^{+n}$ , so the  $F_n$ 's are necessary.

For any  $n \le \omega$ ,  $F_n$  retains its complexity on comeager sets:  $F_n \le_B F_n \upharpoonright C$  for any comeager set C.

In particular,  $=_{\mathbb{R}}^{+n}$  is in the **spectrum of the meager ideal**. This was proved by Kanovei, Sabok, and Zapletal for n = 1. For n > 1, the theorem fails for  $=_{\mathbb{R}}^{+n}$ , so the  $F_n$ 's are necessary.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fix a comeager set *C* (assume it is  $F_n$ -invariant). Fix  $f: F_n \rightarrow_B F_n \upharpoonright C$  which is the identity on *C*.

For any  $n \le \omega$ ,  $F_n$  retains its complexity on comeager sets:  $F_n \le_B F_n \upharpoonright C$  for any comeager set C.

In particular,  $=_{\mathbb{R}}^{+n}$  is in the **spectrum of the meager ideal**. This was proved by Kanovei, Sabok, and Zapletal for n = 1. For n > 1, the theorem fails for  $=_{\mathbb{R}}^{+n}$ , so the  $F_n$ 's are necessary.

- Fix a comeager set C (assume it is  $F_n$ -invariant). Fix  $f: F_n \rightarrow_B F_n \upharpoonright C$  which is the identity on C.
- From the definitions, u<sup>n</sup><sub>k</sub> is not a reduction on any comeager set, for k < n.</p>

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So f does not factor through  $u_k^n$ , for k < n.

For any  $n \le \omega$ ,  $F_n$  retains its complexity on comeager sets:  $F_n \le_B F_n \upharpoonright C$  for any comeager set C.

In particular,  $=_{\mathbb{R}}^{+n}$  is in the **spectrum of the meager ideal**. This was proved by Kanovei, Sabok, and Zapletal for n = 1. For n > 1, the theorem fails for  $=_{\mathbb{R}}^{+n}$ , so the  $F_n$ 's are necessary.

- Fix a comeager set C (assume it is  $F_n$ -invariant). Fix  $f: F_n \rightarrow_B F_n \upharpoonright C$  which is the identity on C.
- From the definitions, u<sup>n</sup><sub>k</sub> is not a reduction on any comeager set, for k < n.</p>
- So f does not factor through  $u_k^n$ , for k < n.
- By the main theorem,  $F_n \leq_B F_n \upharpoonright C$ .

• 
$$X_n = ((2^{\mathbb{N}})^{\mathbb{N}})^n$$
, for  $n = 1, 2, 3, \dots, \omega$ . Fix  $x \in X_n$ .

NT NT

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

$$\begin{array}{l} \blacktriangleright X_n = ((2^{\mathbb{N}})^{\mathbb{N}})^n, \text{ for } n = 1, 2, 3, \dots, \omega. \text{ Fix } x \in X_n. \\ \blacktriangleright A_1^x = \{x(0)(k); \ k \in \mathbb{N}\} \subseteq 2^{\mathbb{N}}. \\ a_1^{x,l} = \{x(0)(k); \ x(1)(l)(k) = 1\} \subseteq A_1^x \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ * & 1 & 0 & 1 & \dots & * & - & * & \dots \\ * & 0 & 1 & 1 & \dots & \mapsto & * & * & - & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & 0 & 1 & 0 & \dots & - & * & * & \dots \\ * & A_2^x = \left\{a_1^{x,l}; \ l \in \mathbb{N}\right\}; \ a_2^{X,l} = \left\{a_1^{x,k}; \ x(2)(l)(k) = 1\right\} \subseteq A_2^x. \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

$$\mathcal{S}_{\infty} = \operatorname{Sym}(\mathbb{N}), \ \mathcal{S}_{\infty} \frown (2^{\mathbb{N}})^{\mathbb{N}} \ \leadsto =_{\mathbb{R}}^{+}$$
 (on a large set).

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

 $S_{\infty} = \operatorname{Sym}(\mathbb{N}), \ S_{\infty} \frown (2^{\mathbb{N}})^{\mathbb{N}} \rightsquigarrow =_{\mathbb{R}}^{+}$  (on a large set). Consider the action  $S_{\infty} \frown (2^{\mathbb{N}})^{\mathbb{N}}$ .



 $S_{\infty} = \operatorname{Sym}(\mathbb{N}), \ S_{\infty} \frown (2^{\mathbb{N}})^{\mathbb{N}} \rightsquigarrow =_{\mathbb{R}}^{+}$  (on a large set). Consider the action  $S_{\infty} \frown (2^{\mathbb{N}})^{\mathbb{N}}$ .



 $F_2$  is induced (on a large set) by the action

$$\mathbf{S}_{\infty} imes S_{\infty} \curvearrowright (2^{\mathbb{N}})^{\mathbb{N}} imes (2^{\mathbb{N}})^{\mathbb{N}}$$

 $S_{\infty} = \operatorname{Sym}(\mathbb{N}), \ S_{\infty} \frown (2^{\mathbb{N}})^{\mathbb{N}} \rightsquigarrow =_{\mathbb{R}}^{+}$  (on a large set). Consider the action  $S_{\infty} \frown (2^{\mathbb{N}})^{\mathbb{N}}$ .



 $F_2$  is induced (on a large set) by the action

$$\mathbf{S}_{\infty} imes S_{\infty} \curvearrowright (2^{\mathbb{N}})^{\mathbb{N}} imes (2^{\mathbb{N}})^{\mathbb{N}}$$

Similarly:  $F_n$  is induced by a natural action of  $(S_{\infty})^n$  on  $((2^{\mathbb{N}})^{\mathbb{N}})^n$ .

 $S_{\infty} = \operatorname{Sym}(\mathbb{N}), \ S_{\infty} \frown (2^{\mathbb{N}})^{\mathbb{N}} \rightsquigarrow =_{\mathbb{R}}^{+}$  (on a large set). Consider the action  $S_{\infty} \frown (2^{\mathbb{N}})^{\mathbb{N}}$ .



 $F_2$  is induced (on a large set) by the action

$$\mathbf{S}_{\infty} imes S_{\infty} \curvearrowright (2^{\mathbb{N}})^{\mathbb{N}} imes (2^{\mathbb{N}})^{\mathbb{N}}$$

Similarly:  $F_n$  is induced by a natural action of  $(S_{\infty})^n$  on  $((2^{\mathbb{N}})^{\mathbb{N}})^n$ . In contrast,  $=_{\mathbb{R}}^{++}$  is naturally induced by an action of

$$S_{\infty} \ltimes (S_{\infty})^{\mathbb{N}}$$
 on  $(\mathbb{R}^{\mathbb{N}})^{\mathbb{N}}$ 

Note:  $=^+$  is  $\Pi_3^0$ ;  $=^{++}$  is  $\Pi_5^0$ ;  $=^{+++}$  is  $\Pi_7^0$ .

Note:  $=^+$  is  $\Pi_3^0$ ;  $=^{++}$  is  $\Pi_5^0$ ;  $=^{+++}$  is  $\Pi_7^0$ .

Theorem (Hjorth-Kechris-Louveau 1998)

=<sup>+n</sup> is potentially  $\Pi_{n+2}^{0}$ : it is Borel reducible to a  $\Pi_{n+2}^{0}$  ER. In fact it is maximal potentially  $\Pi_{n+2}^{0}$  for  $S_{\infty}$ -actions.

Note:  $=^+$  is  $\Pi_3^0$ ;  $=^{++}$  is  $\Pi_5^0$ ;  $=^{+++}$  is  $\Pi_7^0$ .

Theorem (Hjorth-Kechris-Louveau 1998)

=<sup>+n</sup> is potentially  $\Pi_{n+2}^{0}$ : it is Borel reducible to a  $\Pi_{n+2}^{0}$  ER. In fact it is maximal potentially  $\Pi_{n+2}^{0}$  for  $S_{\infty}$ -actions.

Note:

 $F_n$  is  $\mathbf{\Pi}_{n+2}^0$ .

Note: 
$$=^+$$
 is  $\Pi_3^0$ ;  $=^{++}$  is  $\Pi_5^0$ ;  $=^{+++}$  is  $\Pi_7^0$ .

Theorem (Hjorth-Kechris-Louveau 1998)

=<sup>+n</sup> is potentially  $\Pi_{n+2}^{0}$ : it is Borel reducible to a  $\Pi_{n+2}^{0}$  ER. In fact it is maximal potentially  $\Pi_{n+2}^{0}$  for  $S_{\infty}$ -actions.

#### Note:

 $F_n$  is  $\Pi_{n+2}^0$ . e.g.,  $F_2$  is  $\Pi_4^0$ . Main point: given x, y, we want

$$\forall n \exists m \left( a_1^{x,n} = a_1^{y,m} \right)$$



Note:  $=^+$  is  $\Pi_3^0$ ;  $=^{++}$  is  $\Pi_5^0$ ;  $=^{+++}$  is  $\Pi_7^0$ .

Theorem (Hjorth-Kechris-Louveau 1998)

=<sup>+n</sup> is potentially  $\Pi_{n+2}^{0}$ : it is Borel reducible to a  $\Pi_{n+2}^{0}$  ER. In fact it is maximal potentially  $\Pi_{n+2}^{0}$  for  $S_{\infty}$ -actions.

#### Note:

 $F_n$  is  $\Pi_{n+2}^0$ . e.g.,  $F_2$  is  $\Pi_4^0$ . Main point: given x, y, we want

 $\forall n \exists m (\forall i, j [x(0)(i) = y(0)(j) \to x(1)(n)(i) = y(1)(m)(j)])$ 



Focus on the corollary:  $F_n \leq_B F_n \upharpoonright C$  for any comeager C.

Focus on the corollary:  $F_n \leq_B F_n \upharpoonright C$  for any comeager C.

The case n = 1.  $C \subseteq (2^{\mathbb{N}})^{\mathbb{N}}$ . Roughly:

Fix map  $g: 2^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N}}$  s.t. for  $a \neq b \in 2^{\mathbb{N}}$ , g(a), g(b) are "sufficiently generic".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Focus on the corollary:  $F_n \leq_B F_n \upharpoonright C$  for any comeager C.

The case n = 1.  $C \subseteq (2^{\mathbb{N}})^{\mathbb{N}}$ . Roughly:

Fix map  $g: 2^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N}}$  s.t. for  $a \neq b \in 2^{\mathbb{N}}$ , g(a), g(b) are "sufficiently generic". Define  $f: (2^{\mathbb{N}})^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N}}$ 

$$f(x)(n,m) = g(x(n))(m), \ f: (2^{\mathbb{N}})^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N} \times \mathbb{N}} \sim (2^{\mathbb{N}})^{\mathbb{N}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Focus on the corollary:  $F_n \leq_B F_n \upharpoonright C$  for any comeager C.

The case n = 1.  $C \subseteq (2^{\mathbb{N}})^{\mathbb{N}}$ . Roughly:

Fix map  $g: 2^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N}}$  s.t. for  $a \neq b \in 2^{\mathbb{N}}$ , g(a), g(b) are "sufficiently generic". Define  $f: (2^{\mathbb{N}})^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N}}$ 

$$f(x)(n,m) = g(x(n))(m), \ f: (2^{\mathbb{N}})^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N} \times \mathbb{N}} \sim (2^{\mathbb{N}})^{\mathbb{N}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(Not true that  $g(x) \in C$ , but  $\forall^* \pi \in S_\infty$ ,  $\pi \cdot f(x) \in C$ .)

Focus on the corollary:  $F_n \leq_B F_n \upharpoonright C$  for any comeager C.

The case n = 1.  $C \subseteq (2^{\mathbb{N}})^{\mathbb{N}}$ . Roughly:

Fix map  $g: 2^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N}}$  s.t. for  $a \neq b \in 2^{\mathbb{N}}$ , g(a), g(b) are "sufficiently generic". Define  $f: (2^{\mathbb{N}})^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N}}$ 

$$f(x)(n,m) = g(x(n))(m), \ f: (2^{\mathbb{N}})^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N} \times \mathbb{N}} \sim (2^{\mathbb{N}})^{\mathbb{N}}$$

(Not true that  $g(x) \in C$ , but  $\forall^* \pi \in S_\infty$ ,  $\pi \cdot f(x) \in C$ .)

#### Naive hope towards $n \ge 2$ .

Would want some  $g: (2^{\mathbb{N}})^{\mathbb{N}} \times 2^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N}} \times (2^{\mathbb{N}})^{\mathbb{N}}$ , taking some set of reals  $A_1^x$  and some subset  $a \subseteq A_1^x$ , to infinitely many "very distinct" subsets of  $A_1^x$ .

Focus on the corollary:  $F_n \leq_B F_n \upharpoonright C$  for any comeager C.

The case n = 1.  $C \subseteq (2^{\mathbb{N}})^{\mathbb{N}}$ . Roughly:

Fix map  $g: 2^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N}}$  s.t. for  $a \neq b \in 2^{\mathbb{N}}$ , g(a), g(b) are "sufficiently generic". Define  $f: (2^{\mathbb{N}})^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N}}$ 

$$f(x)(n,m) = g(x(n))(m), \ f: (2^{\mathbb{N}})^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N} \times \mathbb{N}} \sim (2^{\mathbb{N}})^{\mathbb{N}}$$

(Not true that  $g(x) \in C$ , but  $\forall^* \pi \in S_\infty$ ,  $\pi \cdot f(x) \in C$ .)

#### Naive hope towards $n \ge 2$ .

Would want some  $g: (2^{\mathbb{N}})^{\mathbb{N}} \times 2^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N}} \times (2^{\mathbb{N}})^{\mathbb{N}}$ , taking some set of reals  $A_1^x$  and some subset  $a \subseteq A_1^x$ , to infinitely many "very distinct" subsets of  $A_1^x$ . This cannot be done in a way which is independent of the enumeration of  $A_1^x$ .

Small modification to n = 1 case: Fix  $g_1 : (2^{\mathbb{N}})^{<\mathbb{N}} \to 2^{\mathbb{N}}$  s.t. for  $a \neq b \in (2^{\mathbb{N}})^{<\mathbb{N}}$ , g(a), g(b) are "sufficiently generic". Define

$$f_1\colon (2^\mathbb{N})^\mathbb{N} o (2^\mathbb{N})^{\mathbb{N}^{<\mathbb{N}}}, \ \ f_1(x)(t) = g_1(x\circ t)$$

Small modification to n = 1 case: Fix  $g_1 : (2^{\mathbb{N}})^{<\mathbb{N}} \to 2^{\mathbb{N}}$  s.t. for  $a \neq b \in (2^{\mathbb{N}})^{<\mathbb{N}}$ , g(a), g(b) are "sufficiently generic". Define

$$f_1\colon (2^{\mathbb{N}})^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N}^{<\mathbb{N}}}, \quad f_1(x)(t) = g_1(x\circ t)$$

Fix  $G: 2^{<\mathbb{N}} \to 2$  "sufficiently generic". Define

$$g_2: 2^{\mathbb{N}} \to 2^{\mathbb{N}^{<\mathbb{N}}}, \quad g_2(x)(t) = G(x \circ t).$$

Small modification to n = 1 case: Fix  $g_1 : (2^{\mathbb{N}})^{<\mathbb{N}} \to 2^{\mathbb{N}}$  s.t. for  $a \neq b \in (2^{\mathbb{N}})^{<\mathbb{N}}$ , g(a), g(b) are "sufficiently generic". Define

$$f_1\colon (2^{\mathbb{N}})^{\mathbb{N}} 
ightarrow (2^{\mathbb{N}})^{\mathbb{N}^{<\mathbb{N}}}, \hspace{1em} f_1(x)(t) = g_1(x\circ t)$$

Fix  $G: 2^{<\mathbb{N}} \to 2$  "sufficiently generic". Define

$$g_2: 2^{\mathbb{N}} \to 2^{\mathbb{N}^{<\mathbb{N}}}, \quad g_2(x)(t) = G(x \circ t).$$

$$(2^{\mathbb{N}})^{\mathbb{N}} imes 2^{\mathbb{N}} o (2^{\mathbb{N}})^{\mathbb{N}^{<\mathbb{N}}} imes 2^{\mathbb{N}^{<\mathbb{N}}}$$

is invariant under the actions

$$S_{\infty} \curvearrowright (2^{\mathbb{N}})^{\mathbb{N}} imes 2^{\mathbb{N}}, \ \operatorname{Sym}(\mathbb{N}^{<\mathbb{N}}) \curvearrowright (2^{\mathbb{N}})^{\mathbb{N}^{<\mathbb{N}}} imes 2^{\mathbb{N}^{<\mathbb{N}}}$$

Small modification to n = 1 case: Fix  $g_1 : (2^{\mathbb{N}})^{<\mathbb{N}} \to 2^{\mathbb{N}}$  s.t. for  $a \neq b \in (2^{\mathbb{N}})^{<\mathbb{N}}$ , g(a), g(b) are "sufficiently generic". Define

$$f_1\colon (2^{\mathbb{N}})^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N}^{<\mathbb{N}}}, \quad f_1(x)(t) = g_1(x\circ t)$$

Fix  $G: 2^{<\mathbb{N}} \to 2$  "sufficiently generic". Define

$$g_2: 2^{\mathbb{N}} \to 2^{\mathbb{N}^{<\mathbb{N}}}, \quad g_2(x)(t) = G(x \circ t).$$

$$(2^{\mathbb{N}})^{\mathbb{N}} \times 2^{\mathbb{N}} o (2^{\mathbb{N}})^{\mathbb{N}^{<\mathbb{N}}} \times 2^{\mathbb{N}^{<\mathbb{N}}}$$

is invariant under the actions

$$\mathcal{S}_{\infty} \curvearrowright (2^{\mathbb{N}})^{\mathbb{N}} imes 2^{\mathbb{N}}, \ \operatorname{Sym}(\mathbb{N}^{<\mathbb{N}}) \curvearrowright (2^{\mathbb{N}})^{\mathbb{N}^{<\mathbb{N}}} imes 2^{\mathbb{N}^{<\mathbb{N}}}$$

E.g.: given  $\zeta, \xi \in 2^{\mathbb{N}}$ , want the subsets corresponding to  $g(\zeta), g(\xi)$  to be "very different". On the set on all  $t \in \mathbb{N}^{<\mathbb{N}}$  for which  $\zeta \circ t, \xi \circ t$  are different, the subsets behave like  $G, \mathfrak{g}, \mathfrak{g} \in \mathbb{R}$ .

Small modification to n = 1 case: Fix  $g_1 : (2^{\mathbb{N}})^{<\mathbb{N}} \to 2^{\mathbb{N}}$  s.t. for  $a \neq b \in (2^{\mathbb{N}})^{<\mathbb{N}}$ , g(a), g(b) are "sufficiently generic". Define

$$f_1: (2^{\mathbb{N}})^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N}^{<\mathbb{N}}}, \ \ f_1(x)(t) = g_1(x \circ t)$$

Fix  $G: (2^{<\mathbb{N}})^{<\mathbb{N}} \to 2$  "sufficiently generic". Define

is invariant under the actions

$$egin{aligned} &\mathcal{S}_\infty \curvearrowright (2^\mathbb{N})^\mathbb{N} imes (2^\mathbb{N})^\mathbb{N}, \ \mathrm{Sym}(\mathbb{N}^{<\mathbb{N}}) \curvearrowright (2^\mathbb{N})^{\mathbb{N}^{<\mathbb{N}}} imes (2^{\mathbb{N}^{<\mathbb{N}}})^{\mathbb{N}^{<\mathbb{N}}} \ &\mathcal{S}_\infty \ & \curvearrowright (2^\mathbb{N})^\mathbb{N} \ & imes (2^\mathbb{N})^{\mathbb{N}^{<\mathbb{N}}} \end{aligned}$$