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Borel homomorphisms and reductions

E

F

An equivalence relation E on a Polish space X is
analytic (Borel) if E ⊆ X × X is analytic (Borel).

Definition
Let E and F be equivalence relations on Polish spaces
X and Y respectively. f : X → Y a Borel map.

I f is a Borel homomorphism, f : E →B F , if
x E x ′ =⇒ f (x) F f (x ′).

I f is a Borel reduction of E to F if
x E x ′ ⇐⇒ f (x) F f (x ′).

I E is Borel reducible to F , denoted E ≤B F ,
if there is a Borel reduction of E to F .

I E ,F are Borel bireducible (E ∼B F ) if E ≤B F & F ≤B E .

Some motivations:
•“Borel definable” cardinality for definable quotient spaces.
• Possible complete invariants for classification problems.
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Friedman-Stanley jump / countable powerset operation

Definition
Let E be an equivalence relation on a Polish space X .
Define E+ on the Polish space XN by

x E+ y ⇐⇒ ∀n∃m(x(n) E y(m)) & ∀n∃m(y(n) E x(m)),

that is, {[x(n)]E ; n ∈ N} = {[y(n)]E ; n ∈ N}.

I The countable powerset operation Pℵ0(−), for the quotient
X/E , coded on a Polish space.

I Classifiability using hereditarily countable invariants.
I E is concretely classifiable if E ≤B =R, equality ER on R.

(Numerical invariants.)
I E is classifiable using countable sets of reals as invariants if

E ≤B =+
R .

I Countable sets of countable sets of reals as invariants:
E ≤B =++

R .
I . . .
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Motivation

Very general goal:

Given equivalence relation E and F , is E ≤B F?

Today’s goal:

For n ≤ ω, develop methods to prove that =+n
R ≤B E for some E .

Remark:
For =+

R , the situation is well understood. Some examples:

I Foreman - Louveau 1995: =+
R is Borel bireducible with the

classification problem of ergodic discrete spectrum measure
preserving transformations.

I Marker 2007: Let T be a first order theory whose space of
types is uncountable. Then =+

R ≤B
∼=T .
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Generic dichotomy for Borel homomorphisms

Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

I =+
R is Borel reducible to E , or

I any Borel homomorphism from =+
R to E maps a comeager

subset of RN into a single E -class.

Theorem (Marker 2007)

T first order theory, uncountable type space. Then =+
R ≤B

∼=T .

I Fix a perfect set of types C , identified with R.
I Naive idea: map a countable set of reals A ⊆ C to a model M

satisfying “precisely” A.
I Can be done if A is a Scott set: sufficiently closed under some

countably many operations.
I Improved idea: A 7→ closure(A) 7→ M.
I This gives a Borel homomorphism, not trivial on comeager

sets. Therefore =+
R ≤B 'T .
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Some difficulties in generalizing for n ≥ 2

Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

I =+
R is Borel reducible to E , or

I any f : =+
R →B E maps a comeager set into a single E -class.

Already for =++
R :

I On a comeager subset C ⊆ (RN)N, (=++
R � C ) ≤B =+

R .

I There is a non-trivial Borel homomorphism from =++
R to =+

R .
That is, the union map 〈xi ,j | i , j ∈ N〉 7→ 〈x<i ,j> | i , j ∈ N〉.

More generally:

I For n ≥ 2, need a different presentation / topology.

I Need to consider the homomorphisms =+n
R →B =+k

R , k < n,
essentially taking a hereditarily countable set of rank n to the
set of its rank k elements.
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Main result

Theorem (S.)

There are equivalence relations Fn on Polish spaces Xn, s.t.

1. Fn ∼B =+n
R , n = 1, 2, 3, . . . , ω, and

there are Borel homomorphism unk : Fn →B Fk , k < n ≤ ω, s.t.

2. for any analytic equivalence relation E either
I Fn is Borel reducible to E , or
I every Borel homomorphism f : Fn →B E factors through unk on

a comeager set, for k < n. (That is, there is a homomorphism
h : Fk →B E so that (h ◦ u) E f on a comeager set.)

Fn ∼B =+n
R

Fk

unk

E

f

h

Figure: (∀f : Fn →B E )(∃k < n ∃h : Fk → E )

To prove that
=+n

R ≤B E , enough
to find a non-trivial
homomorphism.
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An application to a question of Clemens

The following answers positively a question of Clemens.

Theorem (S.)

For any analytic equivalence relation E , either

I =+ω ≤B E , or

I any Borel homomorphism f : =+ω →B E , =+ω retains its
complexity on a fiber, that is, there is y in the domain of E so
that =+ω is Borel reducible to =+ω� {x ; f (x) E y}.

That is, =+ω is prime.

I Can replace =+ω with Fω.

I By the main theorem, if Fω 6≤B E , then any f : Fω →B E
factors through uωk for some k , on a comeager set.

I From the definitions, Fω is equivalent to its restriction to any
fiber of uωk .

I It remains to show that Fω retains its complexity on comeager
sets: Fω ≤B Fω � C for any comeager C .
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Spectrum of the meager ideal

Theorem (S.)

For any n ≤ ω, Fn retains its complexity on comeager sets:
Fn ≤B Fn � C for any comeager set C .

In particular, =+n
R is in the spectrum of the meager ideal.

This was proved by Kanovei, Sabok, and Zapletal for n = 1.
For n > 1, the theorem fails for =+n

R , so the Fn’s are necessary.

I Fix a comeager set C (assume it is Fn-invariant). Fix
f : Fn →B Fn � C which is the identity on C .

I From the definitions, unk is not a reduction on any comeager
set, for k < n.

I So f does not factor through unk , for k < n.

I By the main theorem, Fn ≤B Fn � C .
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Definition of Fn and unm

I Xn = ((2N)N)n, for n = 1, 2, 3, . . . , ω. Fix x ∈ Xn.

I Ax
1 = {x(0)(k); k ∈ N} ⊆ 2N.

ax ,l1 = {x(0)(k); x(1)(l)(k) = 1} ⊆ Ax
1

...
...

...
...

∗ 1 0 1 . . .
∗ 1 1 0 . . .
∗ 0 1 1 . . .
∗ 0 1 0 . . .

x(0) x(1)(0) x(1)(1) x(1)(2)
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What’s good about Fn? Group action

S∞ = Sym(N), S∞y (2N)N  =+
R (on a large set).

Consider the action S∞y (2N)N.

...
...

...
...

∗ 1 0 1 . . .
∗ 1 1 0 . . .
∗ 0 1 1 . . .
∗ 0 1 0 . . .

S∞ y y y y

F2 is induced (on a large set) by the action

S∞ × S∞ y (2N)N × (2N)N

Similarly: Fn is induced by a natural action of (S∞)n on ((2N)N)n.
In contrast, =++

R is naturally induced by an action of

S∞ n (S∞)N on (RN)N
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What’s good about Fn? Borel complexity

Note: =+ is Π0
3 ; =++ is Π0

5 ; =+++ is Π0
7.

Theorem (Hjorth-Kechris-Louveau 1998)

=+n is potentially Π0
n+2: it is Borel reducible to a Π0

n+2 ER.
In fact it is maximal potentially Π0

n+2 for S∞-actions.

Note:
Fn is Π0

n+2.

e.g., F2 is Π0
4. Main point: given x , y , we want

∀n∃m
(
ax ,n1 = ay ,m1

)
∗ 1 1 0 . . .
∗ 0 1 1 . . .
∗ 0 1 0 . . .

x(0) x(1)(0) x(1)(1) x(1)(2)

7→

∗ ∗ − . . .
− ∗ ∗ . . .
− ∗ − . . .

ax ,01 ax ,11 ax ,21
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Some ideas from the proof

Focus on the corollary: Fn ≤B Fn � C for any comeager C .

The case n = 1. C ⊆ (2N)N. Roughly:

Fix map g : 2N → (2N)N s.t. for a 6= b ∈ 2N, g(a), g(b) are
“sufficiently generic”. Define f : (2N)N → (2N)N

f (x)(n,m) = g(x(n))(m), f : (2N)N → (2N)N×N ∼ (2N)N

(Not true that g(x) ∈ C , but ∀∗π ∈ S∞, π · f (x) ∈ C .)

Naive hope towards n ≥ 2.

Would want some g : (2N)N × 2N → (2N)N × (2N)N, taking some
set of reals Ax

1 and some subset a ⊆ Ax
1, to infinitely many “very

distinct” subsets of Ax
1.

This cannot be done in a way which is independent of the
enumeration of Ax

1.
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Some ideas for n ≥ 2

Small modification to n = 1 case: Fix g1 : (2N)<N → 2N s.t. for
a 6= b ∈ (2N)<N, g(a), g(b) are “sufficiently generic”. Define

f1 : (2N)N → (2N)N
<N
, f1(x)(t) = g1(x ◦ t)

Fix G : 2<N → 2 “sufficiently generic”. Define

g2 : 2N → 2N
<N
, g2(x)(t) = G (x ◦ t).

(2N)N × 2N → (2N)N
<N × 2N

<N

is invariant under the actions

S∞ y (2N)N × 2N, Sym(N<N) y (2N)N
<N × 2N

<N

E.g.: given ζ, ξ ∈ 2N, want the subsets corresponding to g(ζ), g(ξ)
to be “very different”. On the set on all t ∈ N<N for which
ζ ◦ t, ξ ◦ t are different, the subsets behave like G .
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